首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Enrichment of four tandem repeats of guanine (G) rich and cytosine (C) rich sequences in functionally important regions of human genome forebodes the biological implications of four-stranded DNA structures, such as G-quadruplex and i-motif, that can form in these sequences. However, there have been few reports on the intramolecular formation of non-B DNA structures in less than four tandem repeats of G or C rich sequences. Here, using mechanical unfolding at the single-molecule level, electrophoretic mobility shift assay (EMSA), circular dichroism (CD), and ultraviolet (UV) spectroscopy, we report an intramolecularly folded non-B DNA structure in three tandem cytosine rich repeats, 5'-TGTC4ACAC4TGTC4ACA (ILPR-I3), in the human insulin linked polymorphic region (ILPR). The thermal denaturation analyses of the sequences with systematic C to T mutations have suggested that the structure is linchpinned by a stack of hemiprotonated cytosine pairs between two terminal C4 tracts. Mechanical unfolding and Br(2) footprinting experiments on a mixture of the ILPR-I3 and a 5'-C4TGT fragment have further indicated that the structure serves as a building block for intermolecular i-motif formation. The existence of such a conformation under acidic or neutral pH complies with the strand-by-strand folding pathway of ILPR i-motif structures.  相似文献   

2.
Certain cytosine-rich (C-rich) DNA sequences can fold into secondary structures as four-stranded i-motifs with hemiprotonated base pairs. Here we synthesized C-rich TINA-intercalating oligonucleotides by inserting a nonnucleotide pyrene moiety between two C-rich regions. The stability of their i-motif structures was studied by using UV melting temperature measurements and circular dichroism spectra at different pH values under noncrowding and crowding conditions (20% poly(ethylene glycol)). When TINA ((R)-3-((4-(1-pyrenylethynyl)benzyl)oxy) propane-1,2-diol) is inserted, the oligonucleotides could form an i-motif at a higher pH than observed for the corresponding wildtype oligonucleotide.  相似文献   

3.
Chakraborty S  Krishnan Y 《Biochimie》2008,90(7):1088-1095
We have constructed and characterized a long-lived hybrid DNA(2)-RNA(2) i-motif that is kinetically formed by mixing equivalent amount of C-rich RNA (R) and C-rich DNA (D). Circular dichroism shows that these hybrids are distinct from their parent DNA(4) or RNA(4) i-motif. pH dependent CD and UV thermal melting experiments showed that the complexes were maximally stable at pH 4.5, the pK(a) of cytosine, consistent with the complex being held by CH(+)-C base pairs. Fluorescence studies confirmed their tetrameric nature and established the relative strand polarities of the RNA and DNA strands in the complex. These showed that in a hybrid D(2)R(2) i-motif two DNA strands occupy one narrow groove and the two RNA strands occupy the other. This suggests that even the sugar-sugar interactions are highly specific. Interestingly, this hybrid slowly disproportionates into DNA(4) i-motifs and ssRNA which would be valuable to study intermediates in DNA(4) i-motif formation.  相似文献   

4.
This report describes the synthesis of C-rich sequence, cytosine pentamer, of aep-PNA and its biophysical studies for the formation of hybrid DNA:aep-PNAi-motif structure with DNA cytosine pentamer (dC5) under acidic pH conditions. Herein, the CD/UV/NMR/ESI-Mass studies strongly support the formation of stable hybrid DNA i-motif structure with aep-PNA even near acidic conditions. Hence aep-PNA C-rich sequence cytosine could be considered as potential DNA i-motif stabilizing agents in vivo conditions.  相似文献   

5.
6.
7.
Homopurine·homopyrimidine (Pu·Py) tracts are likely to play important biological role in eukaryotes. Using circular dichroism, UV-thermal denaturation and gel electrophoresis, we have analyzed the structural polymorphism of a 21-bp Pu·Py DNA segment within human c-jun protooncogene 3′-region, a potential target for triplex formation. Results show that below physiological pH and in the presence of Na+/K+ with Mg2+ the duplex is destabilized/disproportionated, resulting in strand mediated structural transitions to the self-associated structures of G- and C-rich strands separately, identified as G-quadruplex and i-motif species. A significant differential behavior of the monovalent cations was observed, accordingly the presence of Na+ in acidic as well as neutral pH facilitated the duplex formation, while K+ favored the formation of self-associated structures. In Na+ and Mg2+, under acidic and neutral pH conditions, the duplex displayed triphasic and biphasic melting profiles, respectively. This self-association property of oligonucleotides might limit their use as duplex targets in triplex formation. Study is also relevant for understanding structural and biological properties of DNA sequence containing homopurine tracts.  相似文献   

8.
I-motif DNA, which can fold and unfold reversibly in various environments, plays a significant role in DNA nanotechnology and biological functions. Thus, it is of fundamental importance to identify the different conformations of i-motif DNA. Here, we demonstrate that distinct structures of i-motif DNA conjugated to polystyrene spheres can be distinguished through tunable resistive pulse sensing technique. When dispersed in acidic buffer, i-motif DNA coating on polystyrene spheres would fold into quadruplex structure and subsequently induce an apparent increase in the translocation duration time upon passing through a nanopore due to the shielding effect of the surface charge of the nanospheres. However, if the DNA strands don't have conformational changes in acidic buffer, little shift can be observed in the translocation duration time of the DNA functionalized polystyrene spheres. A before-and-after assay was also performed to illustrate the fast speed of i-motif DNA folding using this technique. The successful implementation of tunable resistive pulse sensing to monitor the conformational transition of i-motif DNA provides a potential tool to detect the structural changes of DNA and an alternative approach to study the function of DNA structures.  相似文献   

9.
BackgroundThe i-motif is a tetrameric DNA structure based on the formation of hemiprotonated cytosine-cytosine (C+.C) base pairs. i-motifs are widely used in nanotechnology. In biological systems, i-motifs are involved in gene regulation and in control of genome integrity. In vivo, the i-motif forming sequences are subjects of epigenetic modifications, particularly 5-cytosine methylation. In plants, natively occurring methylation patterns lead to a complex network of C+.C, 5mC+.C and 5mC+.5mC base-pairs in the i-motif stem. The impact of complex methylation patterns (CMPs) on i-motif formation propensity is currently unknown.MethodsWe employed CD and UV-absorption spectroscopies, native PAGE, thermal denaturation and quantum-chemical calculations to analyse the effects of native, native-like, and non-native CMPs in the i-motif stem on the i-motif stability and pKa.ResultsCMPs have strong influence on i-motif stability and pKa and influence these parameters in sequence-specific manner. In contrast to a general belief, i) CMPs do not invariably stabilize the i-motif, and ii) when the CMPs do stabilize the i-motif, the extent of the stabilization depends (in a complex manner) on the number and pattern of symmetric 5mC+.5mC or asymmetric 5mC+.C base pairs in the i-motif stem.ConclusionsCMPs can be effectively used to fine-tune i-motif properties. Our data support the notion of epigenetic modifications as a plausible control mechanism of i-motif formation in vivo.General SignificanceOur results have implications in epigenetic regulation of telomeric DNA in plants and highlight the potential and limitations of engineered patterning of cytosine methylations on the i-motif scaffold in nanotechnological applications.  相似文献   

10.
In this study, we synthesized an Azo-py phosphoramidite, featuring azobenzene and pyrene units, as a novel fluorescent and isomeric (trans- and cis-azobenzene units) material, which we incorporated in an i-motif DNA sequence. We then monitored the structural dynamics and changes in fluorescence as the modified DNA sequences transformed from single strands at pH 7 to i-motif quadruplex structures at pH 3. After incorporating Azo-py into the 4A loop position of an i-motif sequence, dramatic changes in fluorescence occurred as the DNA structures changed from single-strands to i-motif quadruplex structures. Interestingly, the cis form of Azo-py induced a more stable i-motif structure than did the trans form, as confirmed from circular dichroism spectra and melting temperature data. The absorption and fluorescence signals of these Azo-py-incorporated i-motif systems exhibited switchable and highly correlated signaling patterns. Such isomeric structures based on Azo-py might find potential applications in biology, where control over stable i-motif quadruplex structures might be performed with switchable fluorescence signaling.  相似文献   

11.
Non-canonical forms of nucleic acids represent challenging objects for both structure-determination and investigation of their potential role in living systems. In this work, we uncover a structure adopted by GA repetition locked in a parallel homoduplex by an i-motif. A series of DNA oligonucleotides comprising GAGA segment and C3 clip is analyzed by NMR and CD spectroscopies to understand the sequence–structure–stability relationships. We demonstrate how the relative position of the homopurine GAGA segment and the C3 clip as well as single-base mutations (guanine deamination and cytosine methylation) affect base pairing arrangement of purines, i-motif topology and overall stability. We focus on oligonucleotides C3GAGA and methylated GAGAC3 exhibiting the highest stability and structural uniformity which allowed determination of high-resolution structures further analyzed by unbiased molecular dynamics simulation. We describe sequence-specific supramolecular interactions on the junction between homoduplex and i-motif blocks that contribute to the overall stability of the structures. The results show that the distinct structural motifs can not only coexist in the tight neighborhood within the same molecule but even mutually support their formation. Our findings are expected to have general validity and could serve as guides in future structure and stability investigations of nucleic acids.  相似文献   

12.
I-motif or C4 is a four-stranded DNA structure with a protonated cytosine:cytosine base pair (C+:C) found in cytosine-rich sequences. We have found that oligodeoxynucleotides containing adenine and cytosine repeats form a stable secondary structure at a physiological pH with magnesium ion, which is similar to i-motif structure, and have named this structure ‘adenine:cytosine-motif (AC-motif)’. AC-motif contains C+:C base pairs intercalated with putative A+:C base pairs between protonated adenine and cytosine. By investigation of the AC-motif present in the CDKL3 promoter (AC-motifCDKL3), one of AC-motifs found in the genome, we confirmed that AC-motifCDKL3 has a key role in regulating CDKL3 gene expression in response to magnesium. This is further supported by confirming that genome-edited mutant cell lines, lacking the AC-motif formation, lost this regulation effect. Our results verify that adenine-cytosine repeats commonly present in the genome can form a stable non-canonical secondary structure with a non-Watson–Crick base pair and have regulatory roles in cells, which expand non-canonical DNA repertoires.  相似文献   

13.
Oligonucleotides of nonregular heteropyrimidine sequences incorporating or not incorporating purine residues 5'-d(ACTCCCTTCTCCTCTCTA), 5'-d(ACTCCCTGGTCCTCTCTA), 5'-d(TCTCTCCTGGTCCCTCC), and 5'-d(TCTCTCCTCTTCCCTCC) can form self-associated parallel-stranded (ps) structures at pH 4-5.5. The ps structures were identified by studying at neutral and acidic pH UV melting transitions, FTIR spectra, and fluorescence of pyrene-labeled oligonucleotides as well as by chemical joining of 5'-phosphorylated oligonucleotides. A gel electrophoresis run for oligonucleotides 5'-d(TCTCTCCTCTTCCCTCC) and 5'-d(ACTCCCTTCTCCTCTCTA) has shown the formation of homoduplexes at low DNA strand concentrations. Ps structures are held by C-C(+) base pairs and have N- and S-types of sugar puckering as detected by FTIR spectroscopy in the millimolar concentration range. Guanine inserts as well as thymine and purine inserts into an oligomeric cytosine sequence make the formation of the tetraplex i-motif unfavorable. MvaI restriction endonuclease, which recognizes the CCT/AGG sequence in DNA, does not cleave parallel pseudosubstrates.  相似文献   

14.
Fedoroff OY  Rangan A  Chemeris VV  Hurley LH 《Biochemistry》2000,39(49):15083-15090
Telomeric C-rich strands can form a noncanonical intercalated DNA structure known as an i-motif. We have studied the interactions of the cationic porphyrin 5,10,15,20-tetra-(N-methyl-4-pyridyl)porphine (TMPyP4) with the i-motif forms of several oligonucleotides containing telomeric sequences. TMPyP4 was found to promote the formation of the i-motif DNA structure. On the basis of (1)H NMR studies, we have created a model of the i-motif-TMPyP4 complex that is consistent with all the available experimental data. Two-dimensional NOESY data prompted us to conclude that TMPyP4 binds specifically to the edge of the intercalated DNA core by a nonintercalative mechanism. Since we have shown that TMPyP4 binds to and stabilizes the G-quadruplex form of the complementary G-rich telomeric strand, this study raises the intriguing possibility that TMPyP4 can trigger the formation of unusual DNA structures in both strands of the telomeres, which may in turn explain the recently documented biological effects of TMPyP4 in cancer cells.  相似文献   

15.

The primordial RNA world is a hypothetical era prior to the appearance of protein and DNA, when RNA molecules were the sole building blocks for early forms of life on Earth. A critical concern with the RNA-world hypothesis is the instability of the cytosine nucleobase compared to the other three bases (adenine, guanine, and uracil). The author proposes that cytosine residues could have stably existed in the primordial world in the RNA i-motif, a four-stranded quadruplex structure formed by base-pairing of protonated and unprotonated cytosine residues under acidic conditions. The i-motif structure not only increases the lifetime of cytosine residues by slowing their deamination rate, but could also allow RNA polymers to bind to certain ligands (e.g., anions) to perform critical functions. Future studies focused on determining the rate of cytosine deamination in RNA i-motifs over a range of pH, temperature, and pressure conditions, and on interrogating the interactions between ligands and RNA i-motifs, could uncover new evidence of the origin of life on Earth.

  相似文献   

16.
The repetitive DNA sequences found at telomeres and centromeres play a crucial role in the structure and function of eukaryotic chromosomes. This role may be related to the tendency observed in many repetitive DNAs to adopt non-canonical structures. Although there is an increasing recognition of the importance of DNA quadruplexes in chromosome biology, the co-existence of different quadruplex-forming elements in the same DNA structure is still a matter of debate. Here we report the structural study of the oligonucleotide d(TCGTTTCGT) and its cyclic analog d<pTCGTTTCGTT>. Both sequences form dimeric quadruplex structures consisting of a minimal i-motif capped, at both ends, by a slipped minor groove-aligned G:T:G:T tetrad. These mini i-motifs, which do not exhibit the characteristic CD spectra of other i-motif structures, can be observed at neutral pH, although they are more stable under acidic conditions. This finding is particularly relevant since these oligonucleotide sequences do not contain contiguous cytosines. Importantly, these structures resemble the loop moiety adopted by an 11-nucleotide fragment of the conserved centromeric protein B (CENP-B) box motif, which is the binding site for the CENP-B.  相似文献   

17.
Many sequences in genomic DNA are able to form unique tetraplex structures. Such structures are involved in a variety of important cellular processes and are emerging as a new class of therapeutic targets for cancers and other diseases. Screening for molecules targeting the tetraplex structure has been explored using such sequences immobilized on solid surfaces. Immobilized nucleic acids, in certain situations, may better resemble the molecules under in vivo conditions. In this report, we studied the formation of tetraplex structure of both the G-rich and C-rich strands of surface-immobilized human telomere sequence by surface plasmon resonance using the single-stranded DNA binding protein from Escherichia coli as probe. We demonstrate how the formation of G-quadruplex and i-motif could be probed under various conditions by this sequence-universal method. Our results also show that immobilization destabilized the tetraplex structure.  相似文献   

18.
Dhakal S  Yu Z  Konik R  Cui Y  Koirala D  Mao H 《Biophysical journal》2012,102(11):2575-2584
G-quadruplex has demonstrated its biological functions in vivo. Although G-quadruplex in single-stranded DNA (ssDNA) has been well characterized, investigation of this species in double-stranded DNA (dsDNA) lags behind. Here we use chemical footprinting and laser-tweezers-based single-molecule approaches to demonstrate that a dsDNA fragment found in the insulin-linked polymorphic region (ILPR), 5'-(ACA GGGG TGT GGGG)2 TGT, can fold into a G-quadruplex at pH 7.4 with 100 mM K+, and an i-motif at pH 5.5 with 100 mM Li+. Surprisingly, under a condition that favors the formation of both G-quadruplex and i-motif (pH 5.5, 100 mM K+), a unique determination of change in the free energy of unfolding (ΔGunfold) by laser-tweezers experiments provides compelling evidence that only one species is present in each dsDNA. Under this condition, molecules containing G-quadruplex are more stable than those with i-motif. These two species have mechanical stabilities (rupture force≥17 pN) comparable to the stall force of RNA polymerases, which, from a mechanical perspective alone, could justify a regulatory mechanism for tetraplex structures in the expression of human insulin.  相似文献   

19.
Repetitive DNA sequences may adopt unusual pairing arrangements. At acid to neutral pH, cytidine-rich DNA oligodeoxynucleotides can form the i-motif structure in which two parallel-stranded duplexes with C.C(+) pairs are intercalated head-to-tail. The i-motif may be formed by multimeric associations or by intra-molecular folding, depending on the number of cytidine tracts, the nucleotide sequences between them, and the experimental conditions.We have found that a natural fragment of the human centromeric satellite III, d(CCATTCCATTCCTTTCC), can form two monomeric i-motif structures that differ in their intercalation topology and that are favored at pH values higher (the eta-form) and lower (the lambda-form) than 4.6. The change in intercalation may be related to adenine protonation in the loops.We studied the uridine derivative methylated on the first cytidine base, d(5mCCATTCCAUTCCUTTCC), whose proton spectrum is better resolved. The intercalation topologies are (C7.C17)/(5mC1.C11)/(C6.C16)/(C2.C12) for form lambda and (5mC1.C11)/(C7.C17)/(C2.C12)/(C6.C16) for form eta. We have solved the structure of the eta-form, and we present a model for the lambda-form. The switch from eta to lambda involves disruption of the i-motif. In both forms, the central AUT linker crosses the wide groove, and the first and the third linkers loop across the minor grooves. The i-motif core is extended in the eta-form by the inter-loop reverse Watson-Crick A3.U13 pair, whose dissociation constant is around 10(-2) at 0 degrees C, and in the lambda-form by the interloop T5.T15 pair.In contrast, d(5mCCATTCCTTACCTTTCC) folds into a pH-independent structure that has the same intercalation topology as the lambda-form. The i-motif core is extended below by the interloop T5.T15 pair and closed on top by the T8.A10 pair.Thus, the C-rich strand of the human satellite III tandem repeats, like the G-rich strand, can fold into various compact structures. The relevance of these features to centromeric function remains unknown.  相似文献   

20.
In the recently discovered i-motif, four stretches of cytosine form two parallel-stranded duplexes whose C.C+ base pairs are fully intercalated. The i-motif may be recognized by characteristic Overhauser cross-peaks of the proton NMR spectrum, reflecting short H1'-H1' distances across the minor groove, and short internucleotide amino-proton-H2'/H2" across the major groove. We report the observation of such cross-peaks in the spectra of a fragment of the C-rich telomeric strand of vertebrates, d[CCCTAA]3CCC. The spectra also demonstrate that the cytosines are base-paired and that proton exchange is very slow, as reported previously for the i-motif. From UV absorbance and gel chromatography measurements, we assign these properties to an i-motif which includes all or nearly all the cytosines, and which is formed by intramolecular folding at slightly acid or neutral pH. A fragment of telomeric DNA of Tetrahymena, d[CCCCAA]3CCCC, has the same properties. Hence four consecutive C stretches of a C-rich telomeric strand can fold into an i-motif. Hypothetically, this could occur in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号