首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

Alzheimer's disease (AD) is the most common neurodegenerative disorder which is characterized by the deposits of intra-cellular tau protein and extra-cellular amyloid-β (Aβ) peptides in the human brain. Understanding the mechanism of protein aggregation and finding compounds that are capable of inhibiting its aggregation is considered to be highly important for disease therapy.

Methods

We used an in vitro High-Throughput Screening for the identification of potent inhibitors of tau aggregation using a proxy model; a highly aggregation-prone hexapeptide fragment 306VQIVYK311 derived from tau. Using ThS fluorescence assay we screened a library of 2401 FDA approved, bio-active and natural compounds in attempt to find molecules which can efficiently modulate tau aggregation.

Results

Among the screened compounds, palmatine chloride (PC) alkaloid was able to dramatically reduce the aggregation propensity of PHF6 at sub-molar concentrations. PC was also able to disassemble preformed aggregates of PHF6 and reduce the amyloid content in a dose-dependent manner. Insights obtained from MD simulation showed that PC interacted with the key residues of PHF6 responsible for β-sheet formation, which could likely be the mechanism of inhibition and disassembly. Furthermore, PC could effectively inhibit the aggregation of full-length tau and disassemble preformed aggregates.

Conclusions

We found that PC possesses “dual functionality” towards PHF6 and full-length tau, i.e. inhibit their aggregation and disassemble pre-formed fibrils.

General significance

The “dual functionality” of PC is valuable as a disease modifying strategy for AD, and other tauopathies, by inhibiting their progress and reducing the effect of fibrils already present in the brain.  相似文献   

2.
Peterson DW  Zhou H  Dahlquist FW  Lew J 《Biochemistry》2008,47(28):7393-7404
Alzheimer's disease (AD) is characterized by the intracellular accumulation of the neurofibrillary tangles comprised mainly of the microtubule-associated protein, tau. A critical aspect of understanding tangle formation is to understand the transition of soluble monomeric tau into mature fibrils by characterizing the structure of intermediates along the aggregation pathway. We have carried out multidimensional NMR studies on a C-terminal fragment of human tau (tau (187)) to gain structural insight into the aggregation process. To specifically monitor intermolecular interaction between tau molecules in solution, we combined (15)N- and (14)N-labeled tau, the latter of which was modified with a paramagnetic nitroxide spin label (MTSL). Paramagnetic relaxation enhancement (PRE) of (15)N-tau by interaction with MTSL- (14)N-tau allowed identification of low molecular weight oligomers of tau (187) that formed in response to heparin-induced aggregation. Two regions, VQIINK (280) and VQIVYK (311), were exclusively broadened by MTSL located at varied positions in the tau molecule. We propose that soluble oligomers of tau (187) are generated via intermolecular interactions at these motifs triggered by heparin addition. However, the associated line broadening at these motifs cannot be due to interaction between tau (187) and heparin directly. Instead, these specific interactions necessarily occur between tau molecules and are intermolecular in nature. Our data support the idea that VQIINK (280) and VQIVYK (311) are the major, if not sole, critical regions that directly mediate intermolecular contact between tau molecules during the early phases of aggregation.  相似文献   

3.
Hyperphosphorylated forms of tau protein are the main component of paired helical filaments (PHFs) of neurofibrillary tangles in the brain of Alzheimer's disease patients. To understand the effect of phosphorylation on the fibrillation of tau, we utilized tau-derived phosphorylated peptides. The V(306)QIVYK(311) sequence (PHF6) in the microtubule-binding domain is known to play a key role in the fibrillation of tau, and the short peptide corresponding to the PHF6 sequence forms amyloid-type fibrils similar to those generated by full-length tau. We focused on the amino acid residue located at the N-terminus of the PHF6 sequence, serine or lysine in the native isoform of tau, and synthesized the PHF6 derivative peptides with serine or lysine at the N-terminus of PHF6. Peptides phosphorylated at serine and/or tyrosine were synthesized to mimic the possible phosphorylation at these positions. The critical concentrations of the fibrillation of peptides were determined to quantitatively assess fibril stability. The peptide with the net charge of near zero tended to form stable fibrils. Interestingly, the peptide phosphorylated at the N-terminal serine residue exhibited remarkably low fibrillation propensity as compared to the peptide possessing the same net charge. Transmission electron microscopy measurements of the fibrils visualized the paired helical or straight fibers and segregated masses of the fibers or heterogeneous rodlike fibers depending on the phosphorylation status. Further analyses of the fibrils by the X-ray fiber diffraction method and Fourier transform infrared spectroscopic measurements indicated that all the peptides shared a common cross-β structure. In addition, the phosphoserine-containing peptides showed the characteristics of β-sandwiches that could interact with both faces of the β-sheet. On the basis of these observations, possible protofilament models with four β-sheets were constructed to consider the positional effects of the serine and/or tyrosine phosphorylations. The electrostatic intersheet interaction between phosphate groups and the amino group of lysine enhanced the lateral association between β-sheets to compensate for the excess charge. In addition to the previously postulated net charge of the peptide, the position of the charged residue plays a critical role in the amyloid fibrillation of tau.  相似文献   

4.
Tau protein plays a major role in Alzheimer's disease. The tau protein loses its functionality by self‐aggregation due to the two six‐amino acid sequences VQIVYK and VQIINK of the protein. Hence it is imperative to find therapeutics that could inhibit the self‐aggregation of this tau peptide fragments. Here, we study the inhibitory potential of a cationic polymer polyethyleneimine (PEI) and a cationic polypeptide arginine (Arg) on the aggregation of VQIVYK, and GKVQIINKLDL peptides, and tau mutant protein (P301L), found frequently in taupathy. Various characterization methods are employed including thioflavin S, transmission electron microscopy, and dynamic light scattering to study the aggregation/inhibition process in vitro. Results show that PEI and Arg significantly inhibit tau peptides and protein aggregation. The study could be applied to understand tau protein aggregation mechanism in the presence of cationic polymers.  相似文献   

5.
Left-handed polyproline-II type helix is a regular conformation of polypeptide chain not only of fibrous, but also of folded and natively unfolded proteins and peptides. It is the only class of regular secondary structure substantially represented in non-fibrous proteins and peptides on a par with right-handed alpha-helix and beta-structure. In this study, we have shown that polyproline-II helix is abundant in several peptides and proteins involved in proteopathies, the amyloid-beta peptides, protein tau and prion protein. Polyproline-II helices form two interaction sites in the amyloid-beta peptides, which are pivotal for pathogenesis of Alzheimer’s disease (AD). It also with high probability is the structure of the majority of tau phosphorylation sites, important for tau hyperphosphorylation and formation of neurofibrillary tangles, a hallmark of AD. Polyproline-II helices form large parts of the structure of the folded domain of prion protein. They can undergo conversion to beta-structure as a result of relatively small change of one torsional angle of polypeptide chain. We hypothesize that in prions and amyloids, in general polyproline-II helices can serve as structural elements of the normal structure as well as dormant nuclei of structure conversion, and thus play important role in structure changes leading to the formation of fibrils.  相似文献   

6.
Neurofibrillary tangles (NFTs) are found in a wide range of neurodegenerative disorders, including Alzheimer's disease. The major component of NFTs is aberrantly hyperphosphorylated microtubule-associated protein tau. Because appropriate in vivo models have been lacking, the role of tau phosphorylation in NFTs formation has remained elusive. Here, we describe a new model in which adenovirus-mediated gene expression of tau, DeltaMEKK, JNK3, and GSK-3beta in COS-7 cells produces most of the pathological phosphorylation epitopes of tau including AT100. Furthermore, this co-expression resulted in the formation of tau aggregates having short fibrils that were detergent-insoluble and Thioflavin-S-reactive. These results suggest that aberrant tau phosphorylation by the combination of these kinases may be involved in "pretangle," oligomeric tau fibril formation in vivo.  相似文献   

7.
The aggregation of amyloid-β (Aβ) peptides into oligomers and fibrils is a key pathological feature of Alzheimer''s disease (AD). An increasing amount of evidence suggests that oligomeric Aβ might be the major culprit responsible for various neuropathological changes in AD. Death-associated protein kinase 1 (DAPK1) is abnormally elevated in brains of AD patients and plays an important role in modulating tau homeostasis by regulating prolyl isomerase Pin1 phosphorylation. However, it remains elusive whether and how Aβ species influence the function of DAPK1, and whether this may further affect the function and phosphorylation of tau in neurons. Herein, we demonstrated that Aβ aggregates (both oligomers and fibrils) prepared from synthetic Aβ42 peptides were able to upregulate DAPK1 protein levels and thereby its function through heat shock protein 90 (HSP90)-mediated protein stabilization. DAPK1 activation not only caused neuronal apoptosis, but also phosphorylated Pin1 at the Ser71 residue, leading to tau accumulation and phosphorylation at multiple AD-related sites in primary neurons. Both DAPK1 knockout (KO) and the application of a specific DAPK1 inhibitor could effectively protect primary neurons against Aβ aggregate-induced cell death and tau dysregulation, corroborating the critical role of DAPK1 in mediating Aβ aggregation-induced neuronal damage. Our study suggests a mechanistic link between Aβ oligomerization and tau hyperphosphorylation mediated by DAPK1, and supports the role of DAPK1 as a promising target for early intervention in AD.  相似文献   

8.
Du JT  Yu CH  Zhou LX  Wu WH  Lei P  Li Y  Zhao YF  Nakanishi H  Li YM 《The FEBS journal》2007,274(19):5012-5020
Phosphorylation of tau protein modulates both its physiological role and its aggregation into paired helical fragments, as observed in Alzheimer's diseased neurons. It is of fundamental importance to study paired helical fragment formation and its modulation by phosphorylation. This study focused on the fourth microtubule-binding repeat of tau, encompassing an abnormal phosphorylation site, Ser356. The aggregation propensities of this repeat peptide and its corresponding phosphorylated form were investigated using turbidity, thioflavin T fluorescence and electron microscopy. There is evidence for a conformational change in the fourth microtubule-binding repeat of tau peptide upon phosphorylation, as well as changes in aggregation activity. Although both tau peptides have the ability to aggregate, this is weaker in the phosphorylated peptide. This study reveals that both tau peptides are capable of self-aggregation and that phosphorylation at Ser356 can modulate this process.  相似文献   

9.

Background

Neurofibrillary tangles (NFTs) are intraneuronal aggregates associated with several neurodegenerative diseases including Alzheimer's disease. These abnormal accumulations are primarily comprised of fibrils of the microtubule-associated protein tau. During the progression of NFT formation, disperse and non-interacting tau fibrils become stable aggregates of tightly packed and intertwined filaments. Although the molecular mechanisms responsible for the conversion of disperse tau filaments into tangles of filaments are not known, it is believed that some of the associated changes in tau observed in Alzheimer's disease, such as phosphorylation, truncation, ubiquitination, glycosylation or nitration, may play a role.

Results

We have investigated the effects of tau phosphorylation by glycogen synthase kinase-3β (GSK-3β) on tau filaments in an in vitro model system. We have found that phosphorylation by GSK-3β is sufficient to cause tau filaments to coalesce into tangle-like aggregates similar to those isolated from Alzheimer's disease brain.

Conclusion

These results suggest that phosphorylation of tau by GSK-3β promotes formation of tangle-like filament morphology. The in vitro cell-free experiments described here provide a new model system to study mechanisms of NFT development. Although the severity of dementia has been found to correlate with the presence of NFTs, there is some question as to the identity of the neurotoxic agents involved. This model system will be beneficial in identifying intermediates or side reaction products that might be neurotoxic.  相似文献   

10.
Tau protein was scanned for highly amyloidogenic sequences in amphiphilic motifs (X)(n)Z, Z(X)(n)Z (n ≥ 2), or (XZ)(n) (n ≥ 2), where X is a hydrophobic residue and Z is a charged or polar residue. N-Acetyl peptides homologous to these sequences were used to study aggregation. Transmission electron microscopy (TEM) showed seven peptides, in addition to well-known primary nucleating sequences Ac(275)VQIINK (AcPHF6*) and Ac(306)VQIVYK (AcPHF6), formed fibers, tubes, ribbons, or rolled sheets. Of the peptides shown by TEM to form amyloid, Ac(10)VME, AcPHF6*, Ac(375)KLTFR, and Ac(393)VYK were found to enhance the fraction of β-structure of AcPHF6 formed at equilibrium, and Ac(375)KLTFR was found to inhibit AcPHF6 and AcPHF6* aggregation kinetics in a dose-dependent manner, consistent with its participation in a hybrid steric zipper model. Single site mutants were generated which transformed predicted amyloidogenic sequences in tau into non-amyloidogenic ones. A M11K mutant had fewer filaments and showed a decrease in aggregation kinetics and an increased lag time compared to wild-type tau, while a F378K mutant showed significantly more filaments. Our results infer that sequences throughout tau, in addition to PHF6 and PHF6*, can seed amyloid formation or affect aggregation kinetics or thermodynamics.  相似文献   

11.
We have used X-ray fiber diffraction to probe the structure of fibers of tau and tau fragments. Fibers of fragments from the microtubule binding domain had a cross beta-structure that closely resembles that reported both for neurofibrillary tangles found in Alzheimer's disease brain and for fibrous lesions from other protein folding diseases. In contrast, fibers of full-length tau had a different, more complex structure. Despite major differences at the molecular level, all fiber types exhibited very similar morphology by electron microscopy. These results have a number of implications for understanding the etiology of Alzheimer's and other tauopathic diseases. The morphology of the peptide fibers suggests that the region in tau corresponding to the peptides plays a critical role in the nucleation of fiber assembly. The dramatically different structure of the full length tau fibers suggests that some region in tau has enough inherent structure to interfere with the formation of cross beta-fibers. Additionally, the similar appearance by electron microscopy of fibrils with varying molecular structure suggests that different molecular arrangements may exist in other samples of fibers formed from tau.  相似文献   

12.
Paired helical filaments (PHFs) isolated from patients with Alzheimer's disease (AD) mainly consist of the microtubule-associated protein tau in a hyperphosphorylated form. It has been found that PHFs are the first example of pathological protein aggregation associated with formation of alpha-helices [Biochemistry (2002) 41, 7150-5]. In an effort to investigate the interplay between phosphorylation and the putative role of short regions of alpha-helix in the polymerization of tau, we have focused on the region of tau encompassing residues 317 to 335. This region is able to form protein fibrils in vitro and has two serines that are often found phosphorylated in PHFs. Using trifluoroethanol as an indicator of the alpha-helix, we find that the stability of the alpha-helix conformation is enhanced by phosphorylation. Circular dichroism data show that the phosphorylated peptide in water presents a content in alpha-helix similar to the unphosphorylated peptide at 40% of trifluoroethanol. Phosphorylation also stimulates the effect of juglone in promoting the in vitro polymerization. Furthermore, Fourier transformed infrared spectroscopy of samples of phosphorylated peptide polymerized with juglone renders a spectrum with maxima at approximately 1665 and approximately 1675 cm(-1), which are suggestive of a mixture of turns and alpha-helix conformations. Our results provide a direct mechanistic connection between phosphorylation and polymerization in tau. The connection between phosphorylation and polymerization appears to involve formation of alpha-helix structure.  相似文献   

13.
The artificial protein albebetin (ABB) and its derivatives containing biologically active fragments of natural proteins form fibrils at physiological pH. The amyloid nature of the fibrils was confirmed by far UV circular dichroism spectra indicating for rich beta-structure, thioflavin T binding assays, and examination of the obtained polymers by atomic force microscopy. Fusing of short peptides--octapeptide of human alpha(2)-interferon (130-137) or hexapeptide HLDF-6 (41-46) of human leukemia differentiation factor--with the N-terminus of ABB led to increased amyloidogenicity of the protein: the rate of fibril formation increased and the morphology of fibrils became more complex. The presence of free hexapeptide HLDF-6 in the ABB solution had the same effect. Increasing ionic strength also activated the process of amyloid formation, but to less extent than did the peptides fused with ABB or added to the ABB solution. We suggest an important role of electrostatic interactions in formation of ABB fibrils. The foregoing ways (addition of salt or peptides) allow decrease in electrostatic repulsion between ABB molecules carrying large negative charge (-12) at neutral pH, thus promoting fibril formation.  相似文献   

14.
Hyperphosphorylated tau is an integral part of the neurofibrillary tangles that form within neuronal cell bodies, and tau protein kinase II is reported to play a role in the pathogenesis of Alzheimer's disease. Recently, we reported that tau protein kinase II (cdk5/p20)-phosphorylated human tau inhibits microtubule assembly, and tau protein kinase II (cdk5/p20) phosphorylation of microtubule-associated tau results in dissociation of phosphorylated tau from the microtubules and tubulin depolymerization. In the studies reported here, a combination of mass spectrometric techniques was used to study the phosphorylation of human recombinant tau by recombinant tau protein kinase II (cdk5/p20) in vitro. The extent of phosphorylation was determined by measuring the molecular mass of phosphorylated tau using mass spectrometry. Reaction of human recombinant tau with tau protein kinase II (cdk5/p20) resulted in the formation of two major species containing either five or six phosphate groups. The specific amino acid residues phosphorylated were determined by analyzing tryptic peptides by tandem mass spectrometry via either MALDI/TOF post-source decay or by electrospray tandem mass spectrometry. Based on these experiments, we conclude that tau protein kinase II (cdk5/p20) can phosphorylate human tau at Thr(181), Thr(205), Thr(212), Thr(217), Ser(396) and Ser(404).  相似文献   

15.
Fibrillogenesis is a major feature of Alzheimer's disease (AD) and other neurodegenerative diseases. Fibers are correlated with disease severity and they have been implicated as playing a direct role in disease pathophysiology. In studies of tau, instead of finding causality with tau fibrils, we found that tau is associated with reduction of oxidative stress. Biochemical findings show that tau oxidative modifications are regulated by phosphorylation and that tau found in neurofibrillary tangles is oxidatively modified, suggesting that tau is closely linked to the biology, not toxicity, of AD.  相似文献   

16.
The cdk5 and its activator p35 constitute one of the main tau-phosphorylating systems in neuronal cells. Under normal conditions for neurons, its activity is required for modulating tau involvement in neuronal polarity and in development of the mammalian central nervous system. Recently, we reported that the treatment of rat hippocampal cells in culture with fibrillary β-amyloid (Aβ) results in deregulation of the protein kinase cdk5. The neurotoxic effects of Aβ fibrils were prevented by inhibition of cdk5 activity by butyrolactone I or by using antisense oligonucleotides that control the expression of this kinase. Here, we show that the Aβ-promoted increase of cdk5 activity is associated with changes in tau phosphorylation patterns and in the intraneuronal distribution of tau. In addition to hippocampal cells, deregulation of cdk5 was observed in other cell types. However, butyrolactone I prevented Aβ-induced cell death only in neuronal cells in which cdk5 activation was sensitive to Aβ fibrils. This lost of cdk5 regulation in hippocampal cells exposed to Aβ fibrils appears to be associated with an increase in the cdk5–p35 complex stability. Complex stabilization was sensitive to phosphorylation of cdk5. However, no changes in cdk5 and p35 mRNAs were observed, suggesting that the main effects on cdk5 occur at the posttranslational level. These studies indicate that cdk5 phosphorylation and the formation of an abnormally active cdk5–p35 complex are directly involved in the molecular paths leading to the neurodegenerative process of rat hippocampal neurons triggered by Aβ fibrils.  相似文献   

17.
Two types of tau isoform, three- and four-repeat tau, are found in neurofibrillary tangles--a pathological hallmark of tauopathies. Which isoform is deposited in the affected tissues depends on the tauopathy. To study how and which tau isoforms contribute to neuronal degeneration, we have developed and characterized two novel conformation-sensitive antibodies, T3R and T4R. Two closely related synthetic peptides, PGGGKVQIVYK and PGGGSVQIVYK, respectively, were designed as antigens. The isoform-specific residues, (305)K in three-repeat tau or (305)S in four-repeat tau, and the PHF6 motif (VQIVYK) were identified as critical sequences. Despite the high similarity of the antigens, there was no cross-reactivity between T3R and T4R. Furthermore, T3R and T4R showed reduced binding to the thioflavin-positive beta-structural form of their target. These features may enable these antibodies to act as novel indicators that allow us to observe and evaluate conformational changes in each distinct isoform of tau.  相似文献   

18.
The misfolding of proteins into highly ordered fibrils with similar physical properties is a hallmark of many degenerative diseases. Here, we use the microtubule associated protein tau as a model system to investigate the role of amino acid side chains in the formation of such fibrils. We identify a region (positions 272-289) in the tau protein that, in the fibrillar state, either forms part of a core of parallel, in-register, beta-strands, or remains unfolded. Single point mutations are sufficient to control this conformational switch with disease mutants G272V and DeltaK280 (found in familial forms of dementia) inducing a folded state. Through systematic mutagenesis we derive a propensity scale for individual amino acids to form fibrils with parallel, in-register, beta-strands. This scale should not only apply to tau fibrils but generally to all fibrils with same strand arrangement.  相似文献   

19.
The cdk5 and its activator p35 constitute one of the main tau-phosphorylating systems in neuronal cells. Under normal conditions for neurons, its activity is required for modulating tau involvement in neuronal polarity and in development of the mammalian central nervous system. Recently, we reported that the treatment of rat hippocampal cells in culture with fibrillary beta-amyloid (Abeta) results in deregulation of the protein kinase cdk5. The neurotoxic effects of Abeta fibrils were prevented by inhibition of cdk5 activity by butyrolactone I or by using antisense oligonucleotides that control the expression of this kinase. Here, we show that the Abeta-promoted increase of cdk5 activity is associated with changes in tau phosphorylation patterns and in the intraneuronal distribution of tau. In addition to hippocampal cells, deregulation of cdk5 was observed in other cell types. However, butyrolactone I prevented Abeta-induced cell death only in neuronal cells in which cdk5 activation was sensitive to Abeta fibrils. This lost of cdk5 regulation in hippocampal cells exposed to Abeta fibrils appears to be associated with an increase in the cdk5-p35 complex stability. Complex stabilization was sensitive to phosphorylation of cdk5. However, no changes in cdk5 and p35 mRNAs were observed, suggesting that the main effects on cdk5 occur at the posttranslational level. These studies indicate that cdk5 phosphorylation and the formation of an abnormally active cdk5-p35 complex are directly involved in the molecular paths leading to the neurodegenerative process of rat hippocampal neurons triggered by Abeta fibrils.  相似文献   

20.
Alzheimer's disease (AD) is characterized by massive neuron loss in distinct brain regions, extracellular accumulations of the amyloid precursor protein-fragment amyloid-beta (A beta) and intracellular tau fibrils containing hyperphosphorylated tau. Experimental evidence suggests a relation between presenilin (PS) mutations, A beta formation, and tau phosphorylation in triggering cell death; however, how A beta and PS affect tau-dependent degeneration is unknown. Using herpes simplex virus 1-mediated gene-transfer of fluorescent-tagged tau constructs in primary cortical neurons, we demonstrate that tau expression exerts a neurotoxic effect that is increased with a construct mimicking disease-like hyperphosphorylation [pseudohyperphosphorylated (PHP) tau]. Live imaging revealed that PHP tau expression is associated with increased perikarya suggesting the development of a 'ballooned' phenotype as a specific feature of tau-mediated cell death. Transgenic expression of PS1 suppressed tau-induced neurodegeneration. In contrast, A beta amplified degeneration in the presence of wt tau but not of PHP tau. The data indicate that PS1 and A beta inversely modulate tau-dependent neurodegeneration at distinct steps. They indicate that the mode by which PHP tau causes neurotoxicity is downstream of A beta and that tau phosphorylation is the limiting factor in A beta-induced cell death. Suppression of tau expression or inhibition of tau phosphorylation at disease-relevant sites may provide an effective therapeutic strategy to prevent neurodegeneration in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号