首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human factor XIa (hFXIa) has emerged as an attractive target for development of new anticoagulants that promise higher level of safety. Different strategies have been adopted so far for the design of anti-hFXIa molecules including competitive and non-competitive inhibition. Of these, allosteric dysfunction of hFXIa’s active site is especially promising because of the possibility of controlled reduction in activity that may offer a route to safer anticoagulants. In this work, we assess fragment-based design approach to realize a group of novel allosteric hFXIa inhibitors. Starting with our earlier discovery that sulfated quinazolinone (QAO) bind in the heparin-binding site of hFXIa, we developed a group of two dozen dimeric sulfated QAOs with intervening linkers that displayed a progressive variation in inhibition potency. In direct opposition to the traditional wisdom, increasing linker flexibility led to higher potency, which could be explained by computational studies. Sulfated QAO 19S was identified as the most potent and selective inhibitor of hFXIa. Enzyme inhibition studies revealed that 19S utilizes a non-competitive mechanism of action, which was supported by fluorescence studies showing a classic sigmoidal binding profile. Studies with selected mutants of hFXIa indicated that sulfated QAOs bind in heparin-binding site of the catalytic domain of hFXIa. Overall, the approach of fragment-based design offers considerable promise for designing heparin-binding site-directed allosteric inhibitors of hFXIa.  相似文献   

2.
Designing non-saccharide functional mimics of heparin is a major challenge. In this work, a library of small, aromatic molecules based on the sulfated DHP scaffold was synthesized and screened against thrombin and factor Xa. The results reveal that (i) selected monomeric benzofuran derivatives inhibit the two enzymes, albeit weakly; (ii) the two enzymes recognize different structural features in the benzofurans studied suggesting significant selectivity of recognition; and (iii) the mechanism of inhibition is allosteric. The molecules represent the first allosteric small molecule inhibitors of the two enzymes.  相似文献   

3.
A series of 4, 4-disubstituted proline analogs were designed, synthesized, and tested for selective inhibition of blood coagulation factor XIa in search of new non-vitamin K antagonists based oral anticoagulants for potential prevention and treatment of thrombotic diseases. Starting from a potent thrombin (FIIa) inhibitor chemotype with FIIa IC50 = 1 nM and FXIa IC50 = 160 nM, medicinal chemistry iterations guided by molecular modeling and structure-based drug design led to steady improvement of FXIa potency while dialing down thrombin activity and improving selectivity. Through this exercise, a thousand-fold enhancement of selectivity over thrombin was achieved with some analogs carrying factor XIa inhibition potencies in the 10 nM range. In this communication, we discuss the design principles and structure activity relationship (SAR) of these novel FXIa selective inhibitors.  相似文献   

4.
Studies of the mechanisms of blood coagulation zymogen activation demonstrate that exosites (sites on the activating complex distinct from the protease active site) play key roles in macromolecular substrate recognition. We investigated the importance of exosite interactions in recognition of factor IX by the protease factor XIa. Factor XIa cleavage of the tripeptide substrate S2366 was inhibited by the active site inhibitors p-aminobenzamidine (Ki 28 +/- 2 microM) and aprotinin (Ki 1.13 +/- 0.07 microM) in a classical competitive manner, indicating that substrate and inhibitor binding to the active site was mutually exclusive. In contrast, inhibition of factor XIa cleavage of S2366 by factor IX (Ki 224 +/- 32 nM) was characterized by hyperbolic mixed-type inhibition, indicating that factor IX binds to free and S2366-bound factor XIa at exosites. Consistent with this premise, inhibition of factor XIa activation of factor IX by aprotinin (Ki 0.89 +/- 0.52 microM) was non-competitive, whereas inhibition by active site-inhibited factor IXa beta was competitive (Ki 0.33 +/- 0.05 microM). S2366 cleavage by isolated factor XIa catalytic domain was competitively inhibited by p-aminobenzamidine (Ki 38 +/- 14 microM) but was not inhibited by factor IX, consistent with loss of factor IX-binding exosites on the non-catalytic factor XI heavy chain. The results support a model in which factor IX binds initially to exosites on the factor XIa heavy chain, followed by interaction at the active site with subsequent bond cleavage, and support a growing body of evidence that exosite interactions are critical determinants of substrate affinity and specificity in blood coagulation reactions.  相似文献   

5.
The synthesis of a series of novel macrocyclic compounds designed to target blood coagulation Factor XIa is described. The compounds were evaluated for their inhibition of a small set of serine proteases. Several compounds displayed modest activity and good selectivity for Factor XIa. Within the series, a promising lead structure for developing novel macrocyclic inhibitors of thrombin was identified.  相似文献   

6.
Pedicord DL  Seiffert D  Blat Y 《Biochemistry》2004,43(37):11883-11888
Factor XIa is a serine protease which participates in both the extrinsic and intrinsic pathways of blood coagulation. In this work we used active site directed inhibitors to study the mechanism of factor IX activation by factor XIa. To this end, we developed a new sensitive method for the detection of factor IXa based on its affinity to antithrombin III. Using this assay, we found that the peptidic inhibitors, leupeptin and aprotinin, exhibited similar potencies in inhibiting factor IX activation and the cleavage of a tripeptidic chromogenic substrate by factor XIa. As expected, leupeptin and aprotinin were competitive with respect to the tripeptidic chromogenic substrate. However, the inhibition of factor IX activation was best described by mixed-type inhibition with the affinity of leupeptin and aprotinin to the factor XIa-factor IX complex only approximately 10-fold lower than their affinity toward factor XIa. These results, consistent with previous factor XI domain analyses, suggest that the active site of factor XIa does not contribute significantly to the affinity of factor XIa toward factor IX. The competitive component of the inhibition of factor IX activation suggests that binding of factor IX to factor XIa heavy chain affects the interactions of leupeptin and aprotinin with the active site.  相似文献   

7.
A series of functionalized aryl boronic acids were synthesized and evaluated as potential inhibitors of factor XIa. Crystal structures of the protein-inhibitor complexes led to the design and synthesis of second generation compounds showing single digit micromolar inhibition against FXIa and selectivity against thrombin, trypsin, and FXa.  相似文献   

8.
Identification of allosteric inhibitors of PTPs has attracted great interest as a new strategy to overcome the challenge of discover potent and selective molecules for therapeutic intervention. YopH is a virulence factor of the genus Yersinia, validated as an antimicrobial target. The finding of a second substrate binding site in YopH has revealed a putative allosteric site that could be further exploited. Novel chalcone compounds that inhibit PTPs activity were designed and synthesized. Compound 3j was the most potent inhibitor, interestingly, with different mechanisms of inhibition for the panel of enzymes evaluated. Further, our results showed that compound 3j is an irreversible non-competitive inhibitor of YopH that binds to a site different than the catalytic site, but close to the well-known second binding site of YopH.  相似文献   

9.
To study the pathways for initiation of intrinsic blood coagulation, activated human platelets were compared with dextran sulfate as surfaces for factor XI activation by factor XIIa, factor XIa, or thrombin. Activated gel-filtered platelets promoted the activation of factor XI (60 nm) by thrombin (0.02-10 nm, EC(50) approximately 100 pm, threshold concentration approximately 10 pm) at initial rates 2- to 3-fold greater than those obtained with dextran sulfate in the presence of either high molecular weight kininogen (45 nm) and ZnCl(2) (25 micrometer) or prothrombin (1.2 micrometer) and CaCl(2) (2 mm). The maximum rates of factor XI activation achieved in the presence of activated gel-filtered platelets were 30 nm.min(-1) with thrombin, 6 nm.min(-1) with factor XIIa and 2 nm.min(-1) with factor XIa. Values of turnover number calculated at various enzyme concentrations (0.05-1 nm) were 24-167 (mean = 86) min(-1) for thrombin, 4.6-50 (mean = 21) min(-1) for factor XIIa, and 1.3-14 (mean = 8) min(-1) for factor XIa. A physiological concentration of fibrinogen (9.0 micrometer) inhibited factor XI activation by thrombin (but not by factor XIIa) in the presence of dextran sulfate but not in the presence of gel-filtered platelets. Compared with factors XIIa and XIa, thrombin is the preferred factor XI activator, and activated platelets are a relevant physiological surface for thrombin-mediated initiation of intrinsic coagulation in vivo.  相似文献   

10.
Three hydrolases from the crude venom of the Malayan pit viper (Akistrodon rhodostoma) can be differentiated. The first, which we designate ARH alpha, is the well-known fibrinogenolytic enzyme ancrod. The second, ARH beta, which has not been described previously, is identified by its electrophoretic mobility after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), by its ability to hydrolyze H-D-phenylalanyl-L-piperyl-L-arginyl-rho-nitroanilide, and by inhibition of its activity by diisopropyl phosphorofluoridate. The third, ARH gamma, also previously not described, has been purified by using gel permeation and ion-exchange chromatography and preparative PAGE. Chemical, electrophoretic, and hydrodynamic data indicate that it is a single-chain, nonglobular glycoprotein with a molecular weight of 25,600. ARH gamma catalyzes the degradation of several plasma vitamin K dependent coagulation factors, including factor IX, factor X, prothrombin, and protein C. The products are electrophoretically similar to factor IXa beta, factor Xa, thrombin, and activated protein C, respectively. However, these products contain little or no enzymatic activity. ARH gamma-degraded factor IX, factor X, prothrombin, and protein C can be subsequently activated by factor XIa, Russell's viper venom X coagulant protein, crude taipan snake venom, and thrombin, respectively. The N-terminal sequence of the peptides resulting from the ARH gamma digest of porcine factor IX shows that at least three bonds are hydrolyzed: (1) at position 152, seven residues from the Arg145-Ala146 factor XIa cleavage site; (2) at position 167 within the factor IX activation peptide; and (3) at position 177, three residues from the Arg180-Val181 factor XIa cleavage site. The degradation of factor IX by ARH gamma is not affected by several serine protease inhibitors. ARH gamma catalyzes the degradation of both the heavy and light chains of porcine factor VIII which results in the inability of thrombin to activate factor VIII. ARH gamma also catalyzes the degradation of porcine antithrombin III which abolishes its ability to inhibit thrombin. These findings may have relevance to studies of hemostatic derangements following envenomation by this snake. Additionally, several novel coagulation factor derivatives have been generated for structure-function studies.  相似文献   

11.
Factor VIIa (FVIIa), a serine protease enzyme, coupled with tissue factor (TF) plays an important role in a number of thrombosis-related disorders. Inhibition of TF·FVIIa occurs early in the coagulation cascade and might provide some safety advantages over other related enzymes. We report here a novel series of substituted biphenyl derivatives that are highly potent and selective TF·FVIIa inhibitors. Parallel synthesis coupled with structure-based drug design allowed us to explore the S2 pocket of the enzyme active site. A number of compounds with IC50 value of <10 nM were synthesized. The X-ray crystal structures of some of these compounds complexed with TF·FVIIa were determined and results were applied to design the next round of inhibitors. All the potent inhibitors were tested for inhibition against a panel of related enzymes and selectivity of 17,600 over thrombin, 450 over trypsin, 685 over FXa, and 76 over plasmin was achieved. Two groups, vinyl 36b and 2-furan 36ab, were identified as the optimum binding substituents on the phenyl ring in the S2 pocket. Compounds with these two substituents are the most potent compounds in this series with good selectivity over related serine proteases. These compounds will be further explored for structure–activity relationship.  相似文献   

12.
K O Badellino  P N Walsh 《Biochemistry》2001,40(25):7569-7580
Inhibition of factor XIa by protease nexin II (K(i) approximately 450 pM) is potentiated by heparin (K(I) approximately 30 pM). The inhibition of the isolated catalytic domain of factor XIa demonstrates a similar potentiation by heparin (K(i) decreasing from 436 +/- 62 to 88 +/- 10 pM) and also binds to heparin on surface plasmon resonance (K(d) 11.2 +/- 3.2 nM vs K(d) 8.63 +/- 1.06 nM for factor XIa). The factor XIa catalytic domain contains a cysteine-constrained alpha-helix-containing loop: (527)CQKRYRGHKITHKMIC(542), identified as a heparin-binding region in other coagulation proteins. Heparin-binding studies of coagulation proteases allowed a grouping of these proteins into three categories: group A (binding within a cysteine-constrained loop or a C-terminal heparin-binding region), factors XIa, IXa, Xa, and thrombin; group B (binding by a different mechanism), factor XIIa and activated protein C; and group C (no binding), factor VIIa and kallikrein. Synthesized peptides representative of the factor XIa catalytic domain loop were used as competitors in factor XIa binding and inhibition studies. A native sequence peptide binds to heparin with a K(d) = 86 +/- 15 nM and competes with factor XIa in binding to heparin, K(i) = 241 +/- 37 nM. A peptide with alanine substitutions at (534)H, (535)K, (538)H, and (539)K binds and competes with factor XIa for heparin-binding in a manner nearly identical to that of the native peptide, whereas a scrambled peptide is approximately 10-fold less effective, and alanine substitutions at residues (529)K, (530)R, and (532)R result in loss of virtually all activity. We conclude that residues (529)K, (530)R, and (532)R comprise a high-affinity heparin-binding site in the factor XIa catalytic domain.  相似文献   

13.
Thrombin and factor Xa, two important pro-coagulant proteinases, can be regulated through direct and indirect inhibition mechanisms. Recently, we designed sulfated dehydropolymers (DHPs) of 4-hydroxycinnamic acids that displayed interesting anticoagulant properties (Monien, B. H., Henry, B. L., Raghuraman, A., Hindle, M., and Desai, U. R. (2006) Bioorg. Med. Chem. 14, 7988-7998). To better understand their mechanism of action, we studied the direct inhibition of thrombin, factor Xa, factor IXa, and factor VIIa by CDSO3, FDSO3, and SDSO3, three analogs of sulfated DHPs. All three sulfated DHPs displayed a 2-3-fold preference for direct inhibition of thrombin over factor Xa, whereas this preference for inhibiting thrombin over factor IXa and factor VIIa increased to 17-300-fold, suggesting a high level of selectivity. Competitive binding studies with a thrombin-specific chromogenic substrate, a fluorescein-labeled hirudin peptide, bovine heparin, enoxaparin, and a heparin octasaccharide suggest that CDSO3 preferentially binds in or near anion-binding exosite II of thrombin. Studies of the hydrolysis of H-D-hexahydrotyrosol-Ala-Arg-p-nitroanilide indicate that CDSO3 inhibits thrombin through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. Overall, designed sulfated DHPs appear to be the first molecules that bind primarily in the region defined by exosite II and allosterically induce thrombin inhibition. The molecules are radically different in structure from all the current clinically used anticoagulants and thus represent a novel class of potent dual thrombin and factor Xa inhibitors.  相似文献   

14.
Protease cascades and their inhibitors are a common feature of many biological regulatory systems, and the various components of such cascades have been subjected to a long and concerted evolution. We present here evidence that in the coagulation cascade, the sequence of the protease-binding reactive-site loop of antithrombin has evolved such that the majority of its residues has been acquired not for the efficient inhibition of its target proteases, thrombin and factor Xa, but to avoid the inhibition of activated protein C (APC). We substituted residues of the reactive-site loop of antithrombin into α1-antitrypsin and tested the chimeras against thrombin, factor Xa, and APC. With respect to factor Xa and thrombin, the difference in association rate between the fastest and the slowest inhibitors was 5.5- and 88-fold, respectively. However, with respect to APC the difference was 12,500-fold. While most of the variation in the inhibition rates of thrombin could be accounted for by P2 Gly-to-Pro substitutions, for APC almost every residue had an effect on inhibition. In 22 of 25 direct comparisons of antitrypsin residues with antithrombin residues, either singly or in blocs, the antithrombin residues caused a decrease in the rate of inhibition of APC. The antithrombin residue Asn393, at position P′3, emerged as particularly important for avoiding the inhibition of APC, however, its 190-fold effect was seen only when in conjunction with antithrombin P7 to P′2 residues. Cooperative effects among residues of the reactive-site loop thus emerged as critical for restricting the activity of this sequence against APC. Received: 15 November 1999 / Accepted: 2 August 2000  相似文献   

15.
Despite the development of promising direct oral anticoagulants, which are all orthosteric inhibitors, a sizable number of patients suffer from bleeding complications. We have hypothesized that allosterism based on the heparin-binding exosites presents a major opportunity to induce sub-maximal inhibition of coagulation proteases, thereby avoiding/reducing bleeding risk. We present the design of a group of sulfated benzofuran dimers that display heparin-binding site-dependent partial allosteric inhibition of thrombin against fibrinogen (ΔY?=?55–75%), the first time that a small molecule (MW??<?800) has been found to thwart macromolecular cleavage by a monomeric protease in a controlled manner. The work leads to the promising concept that it should be possible to develop allosteric inhibitors that reduce clotting, but do not completely eliminate it, thereby avoiding major bleeding complications that beset anticoagulants today.  相似文献   

16.
Human factor XIa cleaves fibrinogen: effects on structure and function   总被引:1,自引:0,他引:1  
Factor XIa, the enzymatic form of the factor XI zymogen, is generated as a result of factor XII-dependent surface activation in plasma. Factor XIa degrades high molecular weight kininogen, its cofactor for activation (which binds factor XIa to the surface), as well as cleaves and activates coagulation factor IX. In this report, we present evidence that factor XIa can also cleave fibrinogen and decrease the thrombin-catalyzed formation of the fibrin clot. Furthermore, the products of factor XIa-digested fibrinogen markedly inhibited the rate of polymerization of fibrin monomers. Factor XIa initially cleaved the A alpha-chain of fibrinogen and subsequently degraded the B beta-chain. However, the cleavage sites on both chains were distinct from those susceptible to thrombin. The gamma-chain was degraded only after prolonged incubation with factor XIa. Furthermore, the profile of fibrinogen proteolysis by factor XIa was distinctly different from that of plasmin-catalyzed fibrinogenolysis. Unlike plasmin, factor XIa was not able to cleave the NH2-terminus of the B beta-chain of fibrinogen. Moreover, factor XIa, unlike plasmin, failed to hydrolyze fibrin. Further study of the proteolytic digests of fibrinogen produced by factor XIa may give additional insight into the mechanism of polymerization of this protein.  相似文献   

17.
Pyridazine and pyridazinone derivatives were designed and synthesized as coagulation factor XIa inhibitors. Potent and selective inhibitors with single digit nanomolar affinity for factor XIa were discovered. Selected inhibitors demonstrated moderate oral bioavailability.  相似文献   

18.

Background

Black flies (Diptera: Simuliidae) feed on blood, and are important vectors of Onchocerca volvulus, the etiolytic agent of River Blindness. Blood feeding depends on pharmacological properties of saliva, including anticoagulation, but the molecules responsible for this activity have not been well characterized.

Methodology/Principal Findings

Two Kunitz family proteins, SV-66 and SV-170, were identified in the sialome of the black fly Simulium vittatum. As Kunitz proteins are inhibitors of serine proteases, we hypothesized that SV-66 and/or −170 were involved in the anticoagulant activity of black fly saliva. Our results indicated that recombinant (r) SV-66 but not rSV-170 inhibited plasma coagulation. Mutational analysis suggested that SV-66 is a canonical BPTI-like inhibitor. Functional assays indicated that rSV66 reduced the activity of ten serine proteases, including several involved in mammalian coagulation. rSV-66 most strongly inhibited the activity of Factor Xa, elastase, and cathepsin G, exhibited lesser inhibitory activity against Factor IXa, Factor XIa, and plasmin, and exhibited no activity against Factor XIIa and thrombin. Surface plasmon resonance studies indicated that rSV-66 bound with highest affinity to elastase (KD = 0.4 nM) and to the active site of FXa (KD = 3.07 nM). We propose the name “Simukunin” for this novel protein.

Conclusions

We conclude that Simukunin preferentially inhibits Factor Xa. The inhibition of elastase and cathepsin G further suggests this protein may modulate inflammation, which could potentially affect pathogen transmission.  相似文献   

19.
A L Cronlund  P N Walsh 《Biochemistry》1992,31(6):1685-1694
A low molecular weight platelet inhibitor of factor XIa (PIXI) has been purified 250-fold from releasates of washed and stimulated human platelets. Molecular weight estimates of 8400 and 8500 were determined by gel filtration and SDS-polyacrylamide gel electrophoresis, respectively, although a second band of Mr 5000 was present upon electrophoresis. The inhibitor does not appear to be one of the platelet-specific, heparin-binding proteins, since it neither bound to nor was affected by heparin. An amount of PIXI which inhibited by 50% factor XIa cleavage of the chromogenic substrate S2366 (Pyr-Glu-Pro-Arg-pNA-2H2O) only slightly inhibited (5-9%) factor XIIa, plasma kallikrein, plasmin, and activated protein C and did not inhibit factor Xa, thrombin, tPA, or trypsin, suggesting specificity for factor XIa. Kinetic analyses of the effect of PIXI on factor XIa activity demonstrated mixed-type, noncompetitive inhibition of S2366 cleavage and of factor IX activation with Ki's of 7 x 10(-8) and 3.8 x 10(-9) M, respectively. Immunoblot analysis showed that PIXI is not the inhibitory domain of protease nexin II, a potent inhibitor of factor XIa also secreted from platelets. Amino acid analysis showed that PIXI has no cysteine residues and, therefore, is not a Kunitz-type inhibitor. PIXI can prevent stable complex formation between alpha 1-protease inhibitor and factor XIa light chain as demonstrated by SDS-polyacrylamide gel electrophoresis. The inhibition by PIXI of factor XIa-catalyzed activation of factor IX and its capacity to prevent factor XIa inactivation by alpha 1-protease inhibitor, combined with the specificity of PIXI for factor XIa among serine proteases found in blood, suggest a role for PIXI in the regulation of intrinsic coagulation.  相似文献   

20.
IDH1 mutation (mIDH1) occurs in 20–30% of gliomas and is a promising target for the cancer therapy. In this article, a cross docking-based virtual screening was employed to identify seven small molecules for the allosteric site of mIDH1. Compounds ZX01, ZX05 and ZX06 exhibited the potent inhibitory activity and the high selectivity against WT-IDH1, providing a good starting point for the further development of highly selective mIDH1 inhibitors. Importantly, the parallel artificial membrane permeation assay of the blood-brain barrier (PAMPA-BBB) identified ZX06 with a good ability to penetrate BBB. These findings indicate that ZX06 deserves further optimization as a lead compound for the treatment of patients with IDH1 mutated brain cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号