共查询到20条相似文献,搜索用时 8 毫秒
1.
《Bioorganic & medicinal chemistry letters》2020,30(12):127198
Monoacylglycerol lipase (MAGL) has emerged as an attractive drug target because of its important role in regulating the endocannabinoid 2-arachidonoylglycerol (2-AG) and its hydrolysis product arachidonic acid (AA) in the brain. Herein, we report the discovery of a novel series of diazetidinyl diamide compounds 6 and 10 as potent reversible MAGL inhibitors. In addition to demonstrating potent MAGL inhibitory activity in the enzyme assay, the thiazole substituted diazetidinyl diamides 6d–l and compounds 10 were also effective at increasing 2-AG levels in a brain 2-AG accumulation assay in homogenized rat brain. Furthermore, selected compounds have been shown to achieve good brain penetration after oral administration in an animal study. 相似文献
2.
《Bioorganic & medicinal chemistry letters》2020,30(14):127243
Monoacylglycerol lipase (MAGL) is the enzyme that is primarily responsible for hydrolyzing the endocannabinoid 2-arachidononylglycerol (2-AG) to arachidonic acid (AA). It has emerged in recent years as a potential drug target for a number of diseases. Herein, we report the discovery of compound 6g from a series of azetidine-piperazine di-amide compounds as a potent, selective, and reversible inhibitor of MAGL. Oral administration of compound 6g increased 2-AG levels in rat brain and produced full efficacy in the rat complete Freund’s adjuvant (CFA) model of inflammatory pain. 相似文献
3.
《Bioorganic & medicinal chemistry》2016,24(18):4310-4317
Adipocyte fatty acid binding protein (AFABP, FABP4) has been proven to be a potential therapeutic target for diabetes, atherosclerosis and inflammation-related diseases. In this study, a series of new scaffolds of small molecule inhibitors of FABP4 were identified by virtual screening and were validated by a bioassay. Fifty selected compounds were tested, which led to the discovery of seven hits. Structural similarity-based searches were then performed based on the hits and led to the identification of one high affinity compound 33b (Ki = 0.29 ± 0.07 μM, ΔTm = 8.5 °C). This compound’s effective blockade of inflammatory response was further validated by its ability to suppress pro-inflammatory cytokines induced by lipopolysaccharide (LPS) stimulation. Molecular dynamics simulation (MD) and mutagenesis studies validated key residues for its inhibitory potency and thus provide an important clue for the further development of drugs. 相似文献
4.
Madhulata Kumari 《Journal of biomolecular structure & dynamics》2020,38(17):5062-5080
AbstractGlutamine synthetase (GS) of Mycobacterium tuberculosis (Mtb) is an essential enzyme which is involved in nitrogen metabolism and cell wall synthesis. It is involved in the inhibition of phagosome-lysosome fusion by preventing acidification. Targeting GS can be helpful to control the infection of Mtb. In order to identify potential inhibitors, we screened chemical libraries (56,400 compounds of ChEMBL anti-mycobacterial, 1596 FDA approved drugs, 419 Natural product and 916 phytochemical) against this target using the virtual screening approach. Screening by molecular docking identified ten top-ranked compounds as GSMtb inhibitors and they were compared with known inhibitors (as control). Since GS enzyme (GSHs) is also present in human. We have compared the protein sequence of GS from Mtb and human using the P-BLAST in NCBI. We found ~27% identity in between these two sequences, so we also compared the binding affinity of inhibitor between Mtb and human. Finally, we identified top two compounds namely CHEMBL387509, CHEMBL226198 from ChEMBL anti-mycobacterial dataset, and Eriocitrin and Malvidin from phytochemical dataset which showed lees binding affinity towards GSHs whereas Pamidronate, and Phentermine from FDA approved drugs and (-)-Quinic Acid, Hexopyranuronic acid, Quebrachit, and Castanospermine from natural product showed protein-ligand interaction with Mtb protein while no interaction with GSHs. The top two docked complexes were subjected to molecular dynamic simulation to understand the stability of the molecule. Further, we calculated the binding free energy of the docked complex and analyzed hydrogen bond, salt bridge, pie stacking, and hydrophobic interaction in the docking region. These ligands exhibited very good binding affinity GSMtb enzymes. Therefore, these ligands are novel and drug-likeness compounds, and they may be potential inhibitors of M tuberculosis.Communicated by Ramaswamy H. Sarma 相似文献
5.
Structure based virtual screening of ligands to identify cysteinyl leukotriene receptor 1 antagonist
Srinivas Bandaru Vijaya Kumar Marri Priyadarshani Kasera Purnima Kovuri Amandeep Girdhar Deepti Raj Mittal Sabeen Ikram Ravi GV Anuraj Nayarisseri 《Bioinformation》2014,10(10):652-657
Montelukast and Zafirlukast are known leukotriene receptor antagonists prescribed in asthma treatment. However, these fall short
as mono therapy and are frequently used in combination with inhaled glucocorticosteroids with or without long acting beta 2
agonists. Therefore, it is of interest to apply ligand and structure based virtual screening strategies to identify compounds akin to
lead compounds Montelukast and Zafirlukast. Hence, compounds with structures having 95% similarity to these compounds were
retrieved from NCBI׳s PubChem database. Compounds similar to lead were grouped and docked at the antagonist binding site of
cysteinyl leukotriene receptor 1. This exercise identified compounds UNII 70RV86E50Q (Pub Cid 71587778) and Sure CN 9587085
(Pub Cid 19793614) with higher predicted binding compared to Montelukast and Zafirlukast. It is shown that the compound Sure
CN 9587085 showed appreciable ligand receptor interaction compared to UNII 70RV86E50Q. Thus, the compound Sure CN
9587085 is selected as a potent antagonist to cysteinyl leukotriene receptor 1 for further consideration in vitro and in vivo validation. 相似文献
6.
Roger Kist 《Journal of biomolecular structure & dynamics》2017,35(16):3555-3568
The mTOR (mammalian or mechanistic Target Of Rapamycin), a complex metabolic pathway that involves multiple steps and regulators, is a major human metabolic pathway responsible for cell growth control in response to multiple factors and that is dysregulated in various types of cancer. The classical inhibition of the mTOR pathway is performed by rapamycin and its analogs (rapalogs). Considering that rapamycin binds to an allosteric site and performs a crucial role in the inhibition of the mTOR complex without causing the deleterious side effects common to ATP-competitive inhibitors, we employ ligand-based drug design strategies, such as virtual screening methodology, computational determination of ADME/Tox properties of selected molecules, and molecular dynamics in order to select molecules with the potential to become non-ATP-competitive inhibitors of the mTOR enzymatic complex. Our findings suggest five novel potential mTOR inhibitors, with similar or better properties than the classic inhibitor complex, rapamycin. 相似文献
7.
Yinfeng Bao Duoqian Dai Xiaohong Zhu Yanqiu Hu Yaping Qiu 《Journal of receptor and signal transduction research》2013,33(5-6):413-431
AbstractThe 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a master regulator of glycolysis in cancer cells by synthesizing fructose-2,6-bisphosphate (F-2,6-BP), a potent allosteric activator of phosphofructokinase-1 (PFK-1), which is a rate-limiting enzyme of glycolysis. PFKFB3 is an attractive target for cancer treatment. It is valuable to discover promising inhibitors by using 3D-QSAR pharmacophore modeling, virtual screening, molecular docking and molecular dynamics simulation. Twenty molecules with known activity were used to build 3D-QSAR pharmacophore models. The best pharmacophore model was ADHR called Hypo1, which had the highest correlation value of 0.98 and the lowest RMSD of 0.82. Then, the Hypo1 was validated by cost value method, test set method and decoy set validation method. Next, the Hypo1 combined with Lipinski's rule of five and ADMET properties were employed to screen databases including Asinex and Specs, total of 1,048,159 molecules. The hits retrieved from screening were docked into protein by different procedures including HTVS, SP and XP. Finally, nine molecules were picked out as potential PFKFB3 inhibitors. The stability of PFKFB3-lead complexes was verified by 40?ns molecular dynamics simulation. The binding free energy and the energy contribution of per residue to the binding energy were calculated by MM-PBSA based on molecular dynamics simulation. 相似文献
8.
Aspartate β-semialdehyde dehydrogenase (ASADH) is a key enzyme for the biosynthesis of essential amino acids and several important metabolites in microbes. Inhibition of ASADH enzyme is a promising drug target strategy against Mycobacterium tuberculosis (Mtb). In this work, in silico approach was used to identify potent inhibitors of Mtb-ASADH. Aspartyl β-difluorophosphonate (β-AFP), a known lead compound, was used to understand the molecular recognition interactions (using molecular docking and molecular dynamics analysis). This analysis helped in validating the computational protocol and established the participation of Arg99, Glu224, Cys130, Arg249, and His256 amino acids as the key amino acids in stabilizing ligand–enzyme interactions for effective binding, an essential feature is H-bonding interactions with the two arginyl residues at the two ends of the ligand. Best binding conformation of β-AFP was selected as a template for shape-based virtual screening (ZINC and NCI databases) to identify compounds that competitively inhibit the Mtb-ASADH. The top rank hits were further subjected to ADME and toxicity filters. Final filter was based on molecular docking analysis. Each screened molecule carries the characteristics of the highly electronegative groups on both sides separated by an average distance of 6?Å. Finally, the best predicted 20 compounds exhibited minimum three H-bonding interactions with Arg99 and Arg249. These identified hits can be further used for designing the more potent inhibitors against ASADH family. MD simulations were also performed on two selected compounds (NSC4862 and ZINC02534243) for further validation. During the MD simulations, both compounds showed same H-bonding interactions and remained bound to key active residues of Mtb-ASADH. 相似文献
9.
Behnam Rashidieh Sarah Etemadiafshar Golnaz Memari Masoumeh Mirzaeichegeni Shahrzad Yazdi Fatemeh Farsimadan Soodabeh Alizadeh 《Bioinformation》2015,11(8):373-377
Staphylococcus aureus, a Gram-positive bacterium is pathogenic in nature. It is known that secreted toxins remain active after
antibiotic treatment. The alpha hemolysin or alpha toxin damages cell membrane and induces apoptosis and degradation of DNA.
The titer of alphahemolysin increases and causes hemostasis disturbances, thrombocytopenia, and pulmonary lesions during
staphylococcal infection. Therefore, it is of interest to inhibit alpha hemolysin using novel compounds. We used the structure of
alpha hemolysin(PDB: 7AHL) to screen structures for 100,000 compounds from the ZINC database using molecular docking with
AutoDock VINA. Nine (9) successive hits were then subjected for pharmacokinetic and toxicity properties by PROTOX (a
webserver for the prediction of oral toxicities of small molecules) and FAFDrugs (a tool for prediction of ADME and Toxicity). This
exercise further identified hit #1 ({[3a-(Dihydroxymethyl)-6-hydroxy-2,2-dimethyl-1,3,4-trioxatetrahydro-2H-pentalen-5-
yl]methyl}amino(9H-fluoren-9-yl)acetate with binding affinity: -10.3 kcal/mol) and hit #2 (6-(Dihydroxymethyl)-2-{2-[3-
(methylamino)propyl]-2-azatricyclo[9.4.0.03,8]pentadeca-1(11),3,5,7,12,14-hexaen-6-yloxy}tetrahydro-2H-pyran-3,4,5-triol with
binding affinity: -9.6 kcal/mol) with acceptable toxicity and ADME properties for potential predicted hemolysin inhibition. These
compounds should then be evaluated in vitro using inhibitory studies. 相似文献
10.
Docking and molecular dynamics studies of new potential inhibitors of the human epidermal receptor 2
Wilian Augusto Cortopassi Rafael José Cavalieri Feital Diogo de Jesus Medeiros Teobaldo Ricardo Cuya Guizado Tanos Celmar Costa França 《Molecular simulation》2013,39(13):1132-1142
Compounds similar to lapatinib and gefitinib have been investigated as potential inhibitors of the intracellular receptor tyrosine kinase (RTK) domain of the human epidermal receptor 2 (HER2), which is a promising molecular target to the drug design of new chemotherapies for breast, lung, ovarian and colorectal cancers. In this study, we have searched potential HER2 inhibitors used for treatment of other illnesses such as hepatitis, bacterial infections and sexual impotence screened in the DrugBank. The compounds selected were subjected to virtual screening docking in order to evaluate the main interactions between them and the RTK domain of HER2. The selected compounds were investigated by flexible docking, molecular dynamics studies and ΔG bind calculations. The results suggest that antrafenine, saprisartan, reserpine, irinotecan and udenafil are potential candidates to inhibit the RTK domain of HER2. 相似文献
11.
Vahid Fadaei Naeini Masumeh Foroutan Mina Maddah Yves Rémond Majid Baniassadi 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(12):2815-2823
The inhibition of water permeation through aquaporins by ligands of pharmaceutical compounds is considered as a method to control the cell lifetime. The inhibition of aquaporin 1 (AQP1) by bacopaside-I and torsemide, was explored and its atomistic nature was elucidated by molecular docking and molecular dynamics (MD) simulation collectively along with Poisson-Boltzmann surface area (PBSA) method. Docking results revealed that torsemide has a lower level of docking energy in comparison with bacopaside-I at the cytoplasmic side. Furthermore, the effect of steric constraints on water permeation was accentuated. Bacopaside-I inhibits the channel properly due to the strong interaction with the channel and larger spatial volume, whereas torsemide blocks the cytoplasmic side of the channel imperfectly. The most probable active sites of AQP1 for the formation of hydrogen bonds between the inhibitor and the channel were identified by numerical analysis of the bonds. Eventually, free energy assessments indicate that binding of both inhibitors is favorable in complex with AQP1, and van der Waals interaction has an important contribution in stabilizing the complexes. 相似文献
12.
Mandelate racemase (MR) is a promising candidate for the dynamic kinetic resolution of racemates. However, the poor activity of MR towards most of its non-natural substrates limits its widespread application. In this work, a virtual screening method based on the binding energy in the transition state was established to assist in the screening of MR mutants with enhanced catalytic efficiency. Using R-3-chloromandelic acid as a model substrate, a total of 53 mutants were constructed based on rational design in the two rounds of screening. The number of mutants for experimental validation was brought down to 17 by the virtual screening method, among which 14 variants turned out to possess improved catalytic efficiency. The variant V26I/Y54V showed 5.2-fold higher catalytic efficiency (kcat/Km) towards R-3-chloromandelic acid than that observed for the wild-type enzyme. Using this strategy, mutants were successfully obtained for two other substrates, R-mandelamide and R-2-naphthylglycolate (V26I and V29L, respectively), both with a 2-fold improvement in catalytic efficiency. These results demonstrated that this method could effectively predict the trend of mutational effects on catalysis. Analysis from the energetic and structural assays indicated that the enhanced interactions between the active sites and the substrate in the transition state led to improved catalytic efficiency. It was concluded that this virtual screening method based on the binding energy in the transition state was beneficial in enzyme rational redesign and helped to better understand the catalytic properties of the enzyme. 相似文献
13.
Stefania Ferro Rosaria Gitto Maria Rosa Buemi Spyridoula Karamanou Annelies Stevaert Lieve Naesens Laura De Luca 《Bioorganic & medicinal chemistry》2018,26(15):4544-4550
Searching for new antiviral agents, we focused our interest on the influenza PA-Nter endonuclease. Therefore, we developed a three-dimensional pharmacophore model which contains the binding features addressed to the metal-chelating active site. The obtained hypothesis has been fruitfully employed to select three “hit compounds” through an in silico screening campaign on our in-house database of small molecules. We studied the binding poses of these hit compounds using molecular docking, and subjected them to an enzymatic assay with recombinant PA-Nter endonuclease. Compound 20 proved the most active inhibitor of the endonucleolytic cleavage reaction, with an IC50 value of 12?μM. 相似文献
14.
Danya Abazari Mehrad Moghtadaei Ali Behvarmanesh Bahareh Ghannadi Monireh Aghaei Mahboobeh Behruznia Garshasb Rigi 《Bioinformation》2015,11(5):243-247
Ebola virus is a member of Filoviridae and cause severe human disease with 90 percent mortality. The life cycle of Ebola contains
an assembly stage which is mediated by VP40 proteins. VP40 subunits oligomerize and form ring-structures which are either
octamers or hexamers. Prevention of VP40 matrix protein assembly prevents virus particle formation as well as virus budding. In
the present study we simulated the biological condition for a single VP40 subunit. Then a library containing 120.000 drugs like
chemicals was used as the virtual screening database. Top 10 successive hits were then analyzed regarding absorption, distribution,
metabolism, and excretion properties. Moreover probable accessorial human protein targets and toxicity properties of successive
hits were analyzed by in silico tools. We found 4 chemicals that could bind VP40 subunits in a manner that by making an
interfering steric condense prevents matrix protein oligomerization. The pharmacokinetic and toxicity studies also validated the
potential of 4 finlay successive hits to be considered as a new anti-Ebola drugs. 相似文献
15.
Kongkai Zhu Chengshi Jiang Hongrui Tao Jingqiu Liu Hua Zhang Cheng Luo 《Bioorganic & medicinal chemistry letters》2018,28(9):1476-1483
As one of the most promising anticancer target in protein arginine methyltransferase (PRMT) family, PRMT5 has been drawing more and more attentions, and many efforts have been devoted to develop its inhibitors. In this study, three PRMT5 inhibitors (9, 16, and 23) with novel scaffolds were identified by performing pharmacophore- and docking-based virtual screening combined with in vitro radiometric-based scintillation proximity assay (SPA). Substructure search based on the scaffold of the most active 9 afforded 26 additional analogues, and SPA results indicated that two analogues (9–1 and 9–2) showed increased PRMT5 inhibitory activity compared with the parental compound. Resynthesis of 9, 9–1, and 9–2 confirmed their PRMT5 enzymatic inhibition activity. In addition, compound 9–1 displayed selectivity against PRMT5 over other key homological members (PRMT1 and CARM1 (PRMT4)). While the structure–activity relationship (SAR) of this series of compounds was discussed to provide clues for further structure optimization, the probable binding modes of active compounds were also probed by molecular docking and molecular dynamics simulations. Finally, the antiproliferative effect of 9–1 on MV4-11 leukemia cell line was confirmed and its impact on regulating the target gene of PRMT5 was also validated. The hit compounds identified in this work have provided more novel scaffolds for future hit-to-lead optimization of small-molecule PRMT5 inhibitors. 相似文献
16.
Rohit Bavi Shailima Rampogu Yongseong Kim Yong Jung Kwon Seok Ju Park 《Journal of receptor and signal transduction research》2017,37(3):224-238
High level of hematopoietic cell kinase (Hck) is associated with drug resistance in chronic myeloid leukemia. Additionally, Hck activity has also been connected with the pathogenesis of HIV-1 and chronic obstructive pulmonary disease. In this study, three-dimensional (3D) QSAR pharmacophore models were generated for Hck based on experimentally known inhibitors. A best pharmacophore model, Hypo1, was developed with high correlation coefficient (0.975), Low RMS deviation (0.60) and large cost difference (49.31), containing three ring aromatic and one hydrophobic aliphatic feature. It was further validated by the test set (r?=?0.96) and Fisher’s randomization method (95%). Hypo 1 was used as a 3D query for screening the chemical databases, and the hits were further screened by applying Lipinski’s rule of five and ADMET properties. Selected hit compounds were subjected to molecular docking to identify binding conformations in the active site. Finally, the appropriate binding modes of final hit compounds were revealed by molecular dynamics (MD) simulations and free energy calculation studies. Hence, we propose the final three hit compounds as virtual candidates for Hck inhibitors. 相似文献
17.
Zhiyuan Shao Pan Xu Wen Xu Linjuan Li Shien Liu Rukang Zhang Yu-Chih Liu Chenhua Zhang Shijie Chen Cheng Luo 《Bioorganic & medicinal chemistry letters》2017,27(2):342-346
DNA methyltransferases are involved in diverse biological processes and abnormal methylation patterns play essential roles in cancer initiation and progression. DNA methyltransferase 3A (DNMT3A) acting as a de novo DNA methyltransferase, has gained widespread attention especially in haematological diseases. To date, large numbers of DNMTs inhibitors have been discovered, however, the small molecular inhibitors targeting DNMT3A are still in its infancy. In this study, structure-based virtual screening in combination with biological assays was performed to discovery potent novel DNMT3A inhibitors. Compound 40 and 40_3 displayed comparable in vitro inhibitory activity against DNMT3A with IC50 values of 46.5 μM and 41 μM, respectively. Further binding mode analysis suggested these molecules inhibit DNMT3A activity through binding the S-adenosyl-l-methionine (SAM) pocket. Overall, 40 and 40_3 may serve as novel scaffolds for further optimization and small molecular probes for investigating DNMT3A function. 相似文献
18.
Jing-Wei Liang Ming-Yang Wang Shan Wang Shi-Long Li Wan-Qiu Li 《Journal of enzyme inhibition and medicinal chemistry》2013,28(1):235-244
Abstract Cyclin-dependent kinase 2 (CDK2) is the family of Ser/Thr protein kinases that has emerged as a highly selective with low toxic cancer therapy target. A multistage virtual screening method combined by SVM, protein-ligand interaction fingerprints (PLIF) pharmacophore and docking was utilised for screening the CDK2 inhibitors. The evaluation of the validation set indicated that this method can be used to screen large chemical databases because it has a high hit-rate and enrichment factor (80.1% and 332.83 respectively). Six compounds were screened out from NCI, Enamine and Pubchem database. After molecular dynamics and binding free energy calculation, two compounds had great potential as novel CDK2 inhibitors and they also showed selective inhibition against CDK2 in the kinase activity assay. 相似文献
19.
Emergence of multi-drug resistant strains of Acinetobacter baumannii has caused significant health problems and is responsible for high morbidity and mortality. Overexpression of AdeABC efflux system is one of the major mechanisms. In this study, we have focused on overcoming the drug resistance by identifying inhibitors that can effectively bind and inhibit integral membrane protein, AdeB of this efflux pump. We performed homology modeling to generate structure of AdeB using MODELLER v9.16 followed by model refinement using 3D-Refine tool and validated using PSVS, ProsaWeb, ERRAT, etc. The energy minimization of modeled protein was done using Protein preparation wizard application included in Schrodinger suite. High-throughput virtual screening of 159,868 medicinal compounds against AdeB was performed using three sequential docking modes (i.e. HTVS, SP and XP). Furthermore, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis was done using QIKPROP. The selected 123 compounds were further analyzed for binding free energy by molecular mechanics (using prime MM-GBSA). We have also performed enrichment study (ROC curve analysis) to validate our docking results. The selected molecule and its interaction with AdeB were validated by molecular dynamics simulation (MDS) using GROMACS v5.1.4. In silico high-throughput virtual screening and MDS validation identified ZINC01155930 ((4R)-3-(cycloheptoxycarbonyl)-4-(4-etochromen-3-yl)-2-methyl-4,6,7,8-tetrahydroquinolin-5-olate) as a possible inhibitor for AdeB. Hence, it might be a suitable efflux pump inhibitor worthy of further investigation in order to be used for controlling infections caused by Acinetobacter baumannii. 相似文献
20.
A major problem in predicting the enantioselectivity of an enzyme toward substrate molecules is that even high selectivity toward one substrate enantiomer over the other corresponds to a very small difference in free energy. However, total free energies in enzyme-substrate systems are very large and fluctuate significantly because of general protein motion. Candida antarctica lipase B (CALB), a serine hydrolase, displays enantioselectivity toward secondary alcohols. Here, we present a modeling study where the aim has been to develop a molecular dynamics-based methodology for the prediction of enantioselectivity in CALB. The substrates modeled (seven in total) were 3-methyl-2-butanol with various aliphatic carboxylic acids and also 2-butanol, as well as 3,3-dimethyl-2-butanol with octanoic acid. The tetrahedral reaction intermediate was used as a model of the transition state. Investigative analyses were performed on ensembles of nonminimized structures and focused on the potential energies of a number of subsets within the modeled systems to determine which specific regions are important for the prediction of enantioselectivity. One category of subset was based on atoms that make up the core structural elements of the transition state. We considered that a more favorable energetic conformation of such a subset should relate to a greater likelihood for catalysis to occur, thus reflecting higher selectivity. The results of this study conveyed that the use of this type of subset was viable for the analysis of structural ensembles and yielded good predictions of enantioselectivity. 相似文献