首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Notch3 signaling pathway is thought to play a critical role in cancer development, as evidenced by the Notch3 amplification and rearrangement observed in human cancers. However, the molecular mechanism by which Notch3 signaling contributes to tumorigenesis is largely unknown. In an effort to identify the molecular modulators of the Notch3 signaling pathway, we screened for Notch3-intracellular domain (N3-ICD) interacting proteins using a human proteome microarray. Pathway analysis of the Notch3 interactome demonstrated that ubiquitin C was the molecular hub of the top functional network, suggesting the involvement of ubiquitination in modulating Notch3 signaling. Thereby, we focused on functional characterization of an E3 ubiquitin-protein ligase, WWP2, a top candidate in the Notch3 interactome list. Co-immunoprecipitation experiments showed that WWP2 interacted with N3-ICD but not with intracellular domains from other Notch receptors. Wild-type WWP2 but not ligase-deficient mutant WWP2 increases mono-ubiquitination of the membrane-tethered Notch3 fragment, therefore attenuating Notch3 pathway activity in cancer cells and leading to cell cycle arrest. The mono-ubiquitination by WWP2 may target an endosomal/lysosomal degradation fate for Notch3 as suggested by the fact that the process could be suppressed by the endosomal/lysosomal inhibitor. Analysis of The Cancer Genome Atlas dataset showed that the majority of ovarian carcinomas harbored homozygous or heterozygous deletions in WWP2 locus, and there was an inverse correlation in the expression levels between WWP2 and Notch3 in ovarian carcinomas. Furthermore, ectopic expression of WWP2 decreased tumor development in a mouse xenograft model and suppressed the Notch3-induced phenotypes including increase in cancer stem cell-like cell population and platinum resistance. Taken together, our results provide evidence that WWP2 serves as a tumor suppressor by negatively regulating Notch3 signaling in ovarian cancer.  相似文献   

2.
陈尚武 《生命的化学》2001,21(5):379-381
免疫和造血细胞的生长、分化及其他功能受到细胞因子网络的控制。由于大多数细胞因子受体缺乏胞浆段的激酶结构域 ,配体依赖的酪氨酸磷酸化由非受体酪氨酸激酶来中介。细胞因子刺激后早期激活的主要酪氨酸激酶是Januskinase(JAK)家族。事实上 ,JAK STAT途径是许多细胞因子激活基因转录最重要机制之一。当细胞因子结合到细胞表面的受体 ,引起受体的二聚化 ,进而活化JAK激酶 ,活化的JAK激酶反过来磷酸化细胞因子受体 ,导致其他的信号分子如STAT家族蛋白的介入并被激活 ,活化的STAT转入细胞核 ,激活大量细…  相似文献   

3.
The Notch signaling pathway controls a large number of processes during animal development and adult homeostasis. One of the conserved post-translational modifications of the Notch receptors is the addition of an O-linked glucose to epidermal growth factor-like (EGF) repeats with a C-X-S-X-(P/A)-C motif by Protein O-glucosyltransferase 1 (POGLUT1; Rumi in Drosophila). Genetic experiments in flies and mice, and in vivo structure-function analysis in flies indicate that O-glucose residues promote Notch signaling. The O-glucose residues on mammalian Notch1 and Notch2 proteins are efficiently extended by the addition of one or two xylose residues through the function of specific mammalian xylosyltransferases. However, the contribution of xylosylation to Notch signaling is not known. Here, we identify the Drosophila enzyme Shams responsible for the addition of xylose to O-glucose on EGF repeats. Surprisingly, loss- and gain-of-function experiments strongly suggest that xylose negatively regulates Notch signaling, opposite to the role played by glucose residues. Mass spectrometric analysis of Drosophila Notch indicates that addition of xylose to O-glucosylated Notch EGF repeats is limited to EGF14–20. A Notch transgene with mutations in the O-glucosylation sites of Notch EGF16–20 recapitulates the shams loss-of-function phenotypes, and suppresses the phenotypes caused by the overexpression of human xylosyltransferases. Antibody staining in animals with decreased Notch xylosylation indicates that xylose residues on EGF16–20 negatively regulate the surface expression of the Notch receptor. Our studies uncover a specific role for xylose in the regulation of the Drosophila Notch signaling, and suggest a previously unrecognized regulatory role for EGF16–20 of Notch.  相似文献   

4.
5.
6.
The Notch signaling pathway is important for cell fate decisions in embryonic development and adult life. Defining the functional importance of the Notch pathway in these contexts requires the elucidation of essential signal transduction components that have not been fully characterized. Here, we show that Rabconnectin-3B is required for the Notch pathway in mammalian cells. siRNA-mediated silencing of Rabconnectin-3B in mammalian cells attenuated Notch signaling and disrupted the activation and nuclear accumulation of the Notch target Hes1. Rabconnectin-3B knockdown also disrupted V-ATPase activity in mammalian cells, consistent with previous observations in Drosophila. Pharmacological inhibition of the V-ATPase complex significantly reduced Notch signaling in mammalian cells. Finally, Rabconnectin-3B knockdown phenocopied functional disruption of Notch signaling during osteoclast differentiation. Collectively, these findings define an important role for Rabconnectin-3 and V-ATPase activity in the Notch signaling pathway in mammalian cells.  相似文献   

7.
8.
9.
10.

Background

Endocytosis is a key regulatory step of diverse signalling pathways, including receptor tyrosine kinase (RTK) signalling. Hrs and Stam constitute the ESCRT-0 complex that controls the initial selection of ubiquitinated proteins, which will subsequently be degraded in lysosomes. It has been well established ex vivo and during Drosophila embryogenesis that Hrs promotes EGFR down regulation. We have recently isolated the first mutations of stam in flies and shown that Stam is required for air sac morphogenesis, a larval respiratory structure whose formation critically depends on finely tuned levels of FGFR activity. This suggest that Stam, putatively within the ESCRT-0 complex, modulates FGF signalling, a possibility that has not been examined in Drosophila yet.

Principal Findings

Here, we assessed the role of the Hrs/Stam complex in the regulation of signalling activity during Drosophila development. We show that stam and hrs are required for efficient FGFR signalling in the tracheal system, both during cell migration in the air sac primordium and during the formation of fine cytoplasmic extensions in terminal cells. We find that stam and hrs mutant cells display altered FGFR/Btl localisation, likely contributing to impaired signalling levels. Electron microscopy analyses indicate that endosome maturation is impaired at distinct steps by hrs and stam mutations. These somewhat unexpected results prompted us to further explore the function of stam and hrs in EGFR signalling. We show that while stam and hrs together downregulate EGFR signalling in the embryo, they are required for full activation of EGFR signalling during wing development.

Conclusions/Significance

Our study shows that the ESCRT-0 complex differentially regulates RTK signalling, either positively or negatively depending on tissues and developmental stages, further highlighting the importance of endocytosis in modulating signalling pathways during development.  相似文献   

11.
12.
Kinase cascades, in which enzymes are sequentially activated by phosphorylation, are quintessential signaling pathways. Signal transduction is not always achieved by direct activation, however. Often, kinases activate pathways by deactivation of a negative regulator; this indirect mechanism, pervasive in Akt signaling, has yet to be systematically explored. Here, we show that the indirect mechanism has properties that are distinct from direct activation. With comparable parameters, the indirect mechanism yields a broader range of sensitivity to the input, beyond saturation of regulator phosphorylation, and kinetics that become progressively slower, not faster, with increasing input strength. These properties can be integrated in network motifs to produce desired responses, as in the case of feedforward loops.Phosphorylation of proteins and lipids, catalyzed by specific kinase enzymes, is ubiquitous in intracellular signal transduction. A classic example in eukaryotes is the canonical structure of the mitogen-activated protein kinase cascades, in which three kinases are sequentially activated by phosphorylation (1). Another example is the PI3K (phosphoinositide 3-kinase)/Akt pathway, which (like the mammalian mitogen-activated protein kinases) is prominently dysregulated in human cancers (2). Type-I PI3Ks phosphorylate a lipid substrate to produce the lipid second messenger, PIP3, which recruits the protein kinase Akt and mediates its activation by phosphorylation (3,4). In no small part because of these important pathways, we typically think of phosphorylation as a direct means of activating molecular interactions and reactions in signal transduction. This is not the only way to increase the flux through a signaling pathway, however. Consider signaling downstream of Akt, which phosphorylates a host of protein substrates to affect diverse functions. A survey of the Akt signaling hub shows that many of these reactions result in a decrease, rather than an increase, in activity/function of the substrates (3). And, among those substrates, the four listed in Fig. S1 in the Supporting Material). Whereas negative regulators are appreciated for their roles in feedback adaptation of signaling, the implications of deactivating a negative regulator as an indirect mechanism of pathway activation has yet to be explored.

Table 1

Survey of Akt substrates and downstream signaling
Substrate (site)Effect on substrateOutcome
TSC2 (T1462)GAP activity ↓Rheb, mTOR ↑
PRAS40 (T246)mTOR binding ↓mTOR ↑
GSK3α/β (S21/S9)kinase activity ↓β-catenin ↑
BAD (S136)Bcl-2/xL binding ↓Bcl-2/xL ↑
Open in a separate windowHere, we use simple kinetic models to elucidate the basic properties of pathway activation by deactivation of a negative regulator (hereafter referred to as mechanism II), as compared with the standard activation of a positive regulator (mechanism I). The analysis is presented in the context of protein phosphorylation, but the conclusions may be generalized to other reversible modifications or to allosteric binding interactions. The common first step is phosphorylation of the regulatory molecule by the kinase. The activity of the upstream kinase such as Akt may be represented by a dimensionless, time (t)-dependent input signal function, s(t). We assume that the total amount of regulator is constant and define its phosphorylated fraction as ϕ(t). Neglecting concentration gradients and saturation of the upstream kinase and of the opposing (constitutively active) phosphatase(s), the conservation of phosphorylated regulator is expressed as follows (see Text S1 in the Supporting Material):dϕdt=kp[s(1ϕ)ϕ];ϕ(0)=0.(1)The parameter kp is the pseudo-first-order rate constant of protein dephosphorylation. In the case of s = constant (i.e., subject to a step change at t = 0), the properties of this simplified kinetic equation are well known (5) and may be summarized as follows. As the magnitude of the signal strength s increases, the steady-state value of ϕ, ϕss, increases in a saturable fashion; when s >> 1, ϕss approaches its maximum value of 1 and is insensitive to further increases in s. The kinetics of ϕ(t) approaching ϕss become progressively faster as s increases, however.Next, we model the influence of the regulator on a downstream response. Defining the fractional response as ρ and following analogous assumptions as above, we formulate equations for mechanisms I and II as follows:dρdt={[ka,0+(ka,maxka,0)ϕ](1ρ)kd,0ρ(I)ka,0(1ρ)[kd,0(kd,0kd,min)ϕ]ρ(II).(2)In each equation, the first term on the right-hand side describes activation, and the second, deactivation. In mechanism I, the effective rate constant of activation increases linearly with ϕ, from a minimum value of ka,0 when ϕ = 0 up to a maximum value of ka,max when ϕ = 1; the deactivation rate constant is fixed at kd,0. Conversely, in mechanism II, the effective rate constant of deactivation decreases linearly with ϕ, from a maximum value of kd,0 when ϕ = 0 down to a minimum value of kd,min when ϕ = 1; in this mechanism, the activation rate constant is fixed at ka,0. The initial condition is assigned so that ρ is stationary when ϕ = 0. To further set the two mechanisms on a common basis, we define dimensionless parameters such that the maximum steady-state value of ρ (with ϕss = 1) is the same for both mechanisms I and II,gka,max/ka,0kd,0/kd,minKka,0/kd,0.(3)With these definitions, each conservation equation is reduced to the following dimensionless form:1kd,0dρdt={K[1+(g1)ϕ](1ρ)ρ(I)K(1ρ)[1(1g1)ϕ]ρ(II).(4)Mechanisms I and II (Fig. 1 a) are compared first at the level of their steady-state solutions, ρss, for stationary s. Equation 1 yields the familiar hyperbolic dependence of ϕss on s, and ρss(s) has the same shape for both mechanisms. However, whereas ρss of mechanism I shows saturation at a lower value of s than ϕss, the opposite is true of mechanism II (Fig. 1 b). Thus, mechanism II retains sensitivity to the input even while phosphorylation of the upstream regulator shows saturation. This is perhaps more readily seen when ϕss(s) is replaced with a sigmoidal Hill function (i.e., with s replaced by sn in Eq. 1) (Fig. 1 c). The key parameter that affects the relative sensitivities of mechanisms I and II and the disparity between them is the gain constant, g (see Text S1 in the Supporting Material). As this parameter is increased, ρss of mechanism I becomes increasingly saturable with respect to ϕss (Fig. 1 d), whereas ρss of mechanism II gains sensitivity as ϕss approaches 1 (Fig. 1 e). As an illustrative example, consider that when ϕss is increased from 0.90 to 0.95, or from 0.98 to 0.99, the amount of the negative regulator in the active state is reduced by a factor of 2 (see Fig. S2).Open in a separate windowFigure 1Steady-state properties of mechanisms I and II. (a) Schematics of direct (I) and indirect (II) activation. (b) Steady-state dose responses, ρss(s), of mechanisms I and II along with phosphorylation of the upstream regulator, ϕss(s) (Eq. 1 at steady state); K = 0.05, g = 100. (c) Same as panel b, except with a sigmoidal ϕss(s) (Hill function with n = 4). (d) Steady-state output, ρss, of mechanism I vs. ϕss for K = 0.05 and indicated values of the gain constant, g. (e) Same as panel d, but for mechanism II. To see this figure in color, go online.The two mechanisms also show distinct temporal responses. In the response of mechanism I to a step increase in s, ρ(t) approaches ρss with a timescale that generally becomes faster as s increases. Unless the kinetics of ϕ(t) are rate-limiting, the timescale is ∼kd,0–1(1–ρss) (Fig. 2 a; see also Text S1 and Fig. S3 in the Supporting Material). Conversely, the response of mechanism II generally becomes slower as s increases, inasmuch as the frequency of deactivation decreases whereas that of activation is constant, with a timescale of ∼ka,0–1ρss (Fig. 2 b). To approximate a transient input, we model s(t) as a step increase followed by a decay. For mechanism I, the response ρ(t) is such that the variation in the time of the peak, as a function of the step size, is modest. The subsequent decay is prolonged when ϕ(t) hovers close to saturation (Fig. 2 c). Such kinetic schemes have been analyzed in some detail previously (6,7). In contrast, the response of mechanism II to the transient input is such that the system retains sensitivity and consistent decay kinetics beyond the saturation of ϕ(t). The distinctive feature is that ρ(t) peaks noticeably later in time as the magnitude of the peak increases (Fig. 2 d).Open in a separate windowFigure 2Kinetic properties of mechanisms I and II. (a) Response of mechanism I to a step change in s from zero to the indicated s(0). Time is given in units of kpt; parameters are K = 0.05, g = 10, and kd,0 = 0.1kp. (b) Same as panel a, but for mechanism II. (c) Same as panel a, but for a transient input, s(t) = s(0)exp(–0.03kpt). d) Same as panel c, but for mechanism II. To see this figure in color, go online.Having established the basic steady state and kinetic properties of mechanism II as compared with the canonical mechanism I, we considered what outcomes could be achieved by linking these motifs in series or in parallel. Such schemes are identified in the Akt/mTOR signaling network, for example (see Fig. S4). In a standard kinase activation cascade, it is understood that the properties of saturation and sensitivity are compounded with each step of the cascade (8). Thus, two sequential steps of mechanism I yield progressive saturation of the steady-state output at lower s (Fig. 3 a), and the desaturating effect of mechanism II is likewise compounded (Fig. 3 b). By corollary it follows that a sequence of mechanisms I and II will show an intermediate dose response; that is, the mechanism II step offsets the saturation effect of mechanism I.Open in a separate windowFigure 3Serial and parallel schemes incorporating mechanism I or/and II. (a) Steady-state outputs of two response elements, ρ1 and ρ2, activated by mechanism I in series. At each level, K = 0.05, g = 100. (b) Same as panel a, but for mechanism II in series. (c) Incoherent feedforward loop (FFL) in which mechanisms I and II are activated in parallel to activate and inhibit, respectively, the terminal output. For both mechanisms I and II, K = 0.05, g = 100. The parameters for Eq. 5 are α = 2.5, β = 50. To see this figure in color, go online.A more complex scheme is to combine the two mechanisms in parallel, as in an incoherent feedforward loop (FFL) connected to an “AND NOT” output as follows:Output = αρI/(1 + αρIβρII).(5)Given the differential saturation properties of mechanisms I and II, this scheme readily yields the expected biphasic dose response (9) without the need for disparate values of the parameters (Fig. 3 c). Regarding the kinetics, the analysis shown in Fig. 2 makes it clear that mechanism II naturally introduces time delays in cascades or network motifs. Thus, for the incoherent FFL at high, constant s, activation of inhibition by mechanism II would tend to yield a dynamic response marked by a peak followed by adaptation (see Fig. S5). Analogous calculations were carried out for a coherent FFL as well (see Fig. S6).To summarize our conclusions and their implications for signaling downstream of Akt and other kinases, we have described a distinct, indirect signal transduction mechanism characterized by deactivation of a negative regulator. This motif shows steady-state sensitivity beyond saturation, and therefore the activity of the upstream kinase, such as Akt, can be relatively high. By comparison, the direct activation of signaling by phosphorylation requires that activity of the kinase be regulated, or specifically countered by high phosphatase activity, to maintain sensitivity and avoid saturation of the response. The mechanism described here also introduces relatively slow kinetics (for comparable parameter values). This property, together with its extended range of sensitivity, would allow the motif to be incorporated in signaling networks to yield desired steady and unsteady responses in a robust manner. Considering that key signaling processes mediated by Akt (notably activation of the mammalian target of rapamycin (mTOR) pathway) are achieved by deactivation of negative regulators, we assert that greater recognition of this mechanism and of its distinct properties is warranted.  相似文献   

13.
14.
15.
16.
17.
RGS18 is a myeloerythroid lineage-specific regulator of G-protein signaling, highly expressed in megakaryocytes (MKs) and platelets. In the present study, we describe the first generation of a RGS18 knockout mouse model (RGS18-/-). Interesting phenotypic differences between RGS18-/- and wild-type (WT) mice were identified, and show that RGS18 plays a significant role in both platelet generation and function. RGS18 deficiency produced a gain of function phenotype in platelets. In resting platelets, the level of CD62P expression was increased in RGS18-/- mice. This increase correlated with a higher level of plasmatic serotonin concentration. RGS18-/- platelets displayed a higher sensitivity to activation in vitro. RGS18 deficiency markedly increased thrombus formation in vivo. In addition, RGS18-/- mice presented a mild thrombocytopenia, accompanied with a marked deficit in MK number in the bone marrow. Analysis of MK maturation in vitro and in vivo revealed a defective megakaryopoiesis in RGS18-/- mice, with a lower bone marrow content of only the most committed MK precursors. Finally, RGS18 deficiency was correlated to a defect of platelet recovery in vivo under acute conditions of thrombocytopenia. Thus, we highlight a role for RGS18 in platelet generation and function, and provide additional insights into the physiology of RGS18.  相似文献   

18.
The Jun N-terminal kinase and p38 pathways, also known as stress-activated protein kinase (SAPK) pathways, are signaling conduits reiteratively used throughout the development and adult life of metazoans where they play central roles in the control of apoptosis, immune function, and environmental stress responses. We recently identified a Drosophila Ser/Thr phosphatase of the PP2C family, named Alphabet (Alph), which acts as a negative regulator of the Ras/ERK pathway. Here we show that Alph also plays an inhibitory role with respect to Drosophila SAPK signaling during development as well as under stress conditions such as oxidative or genotoxic stresses. Epistasis experiments suggest that Alph acts at a step upstream of the MAPKKs Hep and Lic. Consistent with this interpretation, biochemical experiments identify the upstream MAPKKKs Slpr, Tak1, and Wnd as putative substrates. Together with previous findings, this work identifies Alph as a general attenuator of MAPK signaling in Drosophila.  相似文献   

19.

Background

Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR) of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD) that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia.

Principal Findings

The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity.

Conclusions/Significance

S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with models for receptor activation in which ligand-binding or T-ALL-associated mutations lead to conformational changes of the NRR that permit metalloprotease cleavage.  相似文献   

20.
The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of “regulator of G protein signaling” (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 420AKKAA424 mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号