首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of triterpenoids with different grades of oxidation in the lupane skeleton were prepared and evaluated as cholinesterase inhibitors. Allylic oxidation with selenium oxide and Jones’s oxidation were employed to obtain mono-, di- and tri-oxolupanes, starting from calenduladiol (1) and lupeol (3). All the derivatives showed a selective inhibition of butyrylcholinesterase over acetylcholinesterase (BChE vs. AChE). A kinetic study proved that compounds 2 and 9, the more potent inhibitors of the series, act as competitive inhibitors. Molecular modeling was used to understand their interaction with BChE, the role of carbonyl at C-16 and the selectivity towards this enzyme over AChE. These results indicate that oxidation at C-16 of the lupane skeleton is a key transformation in order to improve the cholinesterase inhibition of these compounds.  相似文献   

2.
In addition to the first synthesis of the natural bromophenol butyl 2-(3,5-dibromo-4-hydroxyphenyl)acetate ( 1 ), indene derivatives 34 and 35 were synthesized from 3-phenylpropenal derivatives in BBr3 medium. Five known natural bromophenols and some derivatives were synthesized by known methods. Cholinesterase (ChEs) inhibitors reduce the breakdown of acetylcholine and are used in the treatment of Alzheimer's disease (AD) and dementia symptoms. The inhibition effects of all obtained compounds were examined towards acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glycosidase enzymes. All synthesized compounds demonstrated the strong inhibition effects against both cholinergic enzymes. For determination of Ki values of novel bromophenols Lineweaver-Burk graphs were obtained. Ki values were found in the ranging of 0.13–14.74 nM for AChE, 5.11–23.95 nM for BChE, and 63.96–206.78 nM for α-glycosidase, respectively. All bromophenols and their derivatives exhibit effective inhibition profile when compared to positive controls.  相似文献   

3.
Abstract

The enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are primary targets in attenuating the symptoms of neurodegenerative diseases. Their inhibition results in elevated concentrations of the neurotransmitter acetylcholine which supports communication among nerve cells. It was previously shown for trans-4/5-arylethenyloxazole compounds to have moderate AChE and BChE inhibitory properties. A preliminary docking study showed that elongating oxazole molecules and adding a new NH group could make them more prone to bind to the active site of both enzymes. Therefore, new trans-amino-4-/5-arylethenyl-oxazoles were designed and synthesised by the Buchwald-Hartwig amination of a previously synthesised trans-chloro-arylethenyloxazole derivative. Additionally, naphthoxazole benzylamine photoproducts were obtained by efficient photochemical electrocyclization reaction. Novel compounds were tested as inhibitors of both AChE and BChE. All of the compounds exhibited binding preference for BChE over AChE, especially for trans-amino-4-/5-arylethenyl-oxazole derivatives which inhibited BChE potently (IC50 in µM range) and AChE poorly (IC50?100?µM). Therefore, due to the selectivity of all of the tested compounds for binding to BChE, these compounds could be applied for further development of cholinesterase selective inhibitors.
  • HIGHLIGHTS
  • Series of oxazole benzylamines were designed and synthesised

  • The tested compounds showed binding selectivity for BChE

  • Naphthoxazoles were more potent AChE inhibitors

  相似文献   

4.
Reversible inhibitors (e.g., pyridostigmine bromide, neostigmine bromide) of carbamate origin are used in the early treatment of Myasthenia gravis (MG) to block acetylcholinesterase (AChE) native function and conserve efficient amount of acetylcholine for decreasing number of nicotinic receptors. Carbamate inhibitors are known for many undesirable side effects related to the reversible inhibition of AChE. In contrast, this paper describes 20 newly prepared bispyridinium inhibitors of potential concern for MG. Although some compounds from this series have been known before, they were not assayed for cholinesterase inhibition yet.The newly prepared compounds were evaluated in vitro on human erythrocyte AChE and human plasmatic butyrylcholinesterase (BChE). Their inhibitory ability was expressed as IC50 and compared to standard carbamate drugs. Three compounds presented promising inhibition (in μM range) of both enzymes in vitro similar to the used standards. The novel inhibitors did not present selectivity between AChE and BChE. Two newly prepared compounds were chosen for docking studies and confirmed apparent π–π or π–cationic interactions aside enzyme’s catalytic sites. The kinetics assay confirmed non-competitive inhibition of AChE by two best newly prepared compounds.  相似文献   

5.
A comparative study is carried out on dependence of degree of activity inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) of a freshwater bony fish, the roach Rutilus rutilus L., on concentration of organophosphates: O,O-dimethyl-O-(2,2-dichlorovynyl)phosphate (DDVP) and tetraisopropylamidopyrophosphate (iso-OMPA). It has been shown that both in roach and in horse the both inhibitors are selective for BChE in comparison with AChE. Their selectivity degree was 2000-fold and 80-fold, respectively. The ranges of effective DDVP concentrations are overlapped for horse AChE and BChE, while they do not for the roach enzymes. A similar regularity is revealed at action of iso-OMPA. It is established that DDVP has a higher inhibitory potency and selectivity in relation to roach BChE, than iso-OMPA. It is suggested to use DDVP as a new selective inhibitor for separate evaluation of AChE and BChE activities in fish tissues.  相似文献   

6.
The skeleton of the diterpene dehydroabietylamine was modified, and a set of 12-hydroxy-dehydroabietylamine derivatives was obtained. The compounds were screened in colorimetric Ellman’s assays to determine their ability to act as inhibitors for the enzymes acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum). Additional investigations concerning the enzyme kinetics were performed and showed 12-hydroxy-N-(4-nitro-benzoyl)dehydroabietylamine (13) and 12-hydroxy-N-(isonicotinoyl)dehydroabietylamine (17) as selective BChE inhibitors holding good inhibition constants Ki = 0.72 ± 0.06 μM and Ki = 0.86 ± 0.19 μM, respectively.  相似文献   

7.
This current study described the design and synthesis of a series of derivatives based on a natural pyranoisaflavone, which was obtained from the seeds of Millettia pachycarpa and displayed attractive BChE inhibition and high selectivity in our previous study. The inhibitory potential of all derivatives against two cholinesterases was evaluated. Only a few compounds demonstrated AChE inhibitory activity at the tested concentrations, while 26 compounds showed significant inhibition on BChE (the IC50 values varied from 9.34 μM to 0.093 μM), most of them presented promising selectivity to ward BChE. Prediction of ADME properties for 7 most active compounds was performed. Among them, 9g (IC50 = 222 nM) and 9h (IC50 = 93 nM) were found to be the most potent BChE inhibitors with excellent selectivity over AChE (SI ratio = 1339 and 836, respectively). The kinetic analysis demonstrated both of them acted as mixed-type BChE inhibitors, while the molecular docking results indicated that they interacted with both residues in the catalytic active site. A cytotoxicity test on PC12 cells showed that both 9g and 9h had a therapeutic safety range similar to tacrine. Overall, the results indicate that 9h could be a good candidate of BChE inhibitors.  相似文献   

8.
In search of potent inhibitors of cholinesterases, we have synthesized and evaluate a number of 2,3-dihydroquinazolin-4(1H)-one derivatives. The synthetic approach provided an efficient synthesis of the target molecules with excellent yield. All the tested compounds showed activity against both the enzymes in micromolar range. In many case, the inhibition of both enzymes are higher than or comparable to the standard drug galatamine. With the selectivity index of 2.3 for AChE, compound 5f can be considered as a potential lead compound with a feature of dual AChE/BChE inhibition with IC50 = 1.6 ± 0.10 μM (AChE) and 3.7 ± 0.18 μM (BChE). Binding modes of the synthesized compounds were explored by using GOLD (Genetic Optimization for Ligand Docking) suit v5.4.1. The computed binding modes of these compounds in the active site of AChE and BChE provide an insight into the mechanism of inhibition of these two enzyme.  相似文献   

9.
Bambuterol is a chiral carbamate and a selective inhibitor of butyrylcholinesterase (BChE, EC 3.1.1.8). In order to relate bambuterol selectivity and stereoselectivity of BChE and acetylcholinesterase (AChE, EC 3.1.1.7) of different species, we studied the inhibition of human, mouse, and horse BChE, as well as AChE of human and mouse by (R)- and (S)-bambuterol. AChE and BChE of all studied species were progressively inhibited by both bambuterol enantiomers, with a preference for the (R)-bambuterol whose inhibition rate constants were about five times higher than that of (S)-bambuterol. We observed no significant difference between human and mouse in bambuterol enantiomer BChE inhibition. However, (R)-bambuterol inhibited horse BChE about 14 times slower than human and mouse BChE, and the inhibition rate for (S)-bambuterol was about 18 times slower. Although the primary structure of horse BChE differs from the other two species in 15 amino acids, we presumed that differences in inhibition rates could be attributed to threonine at position 69 located close to the peripheral site of BChE. Since BChE inhibition by bambuterol enantiomers was at least 8000 times faster than that of AChE, both bambuterol enantiomers proved to be selective BChE inhibitors, as was previously shown for racemate.  相似文献   

10.
Cholinesterase inhibitors find application in the combat and care of several diseases, especially AD. Jellyfish venoms are the most promising sources of potent cholinesterase inhibitors. Therefore, it is of interest to study cholinesterases inhibiting compounds from the Cassiopea andromeda venom. We report bioactive compounds using the GC-MC method followed by molecular modeling and docking data analysis. The GC-MS analysis of the crude venom led to the identification of seven bioactive compounds (C1-C7), comprising the steroidal alkaloids, phenolic and carotenoid derivatives. The venom exhibited inhibitory activities against the cholinesterase enzymes. The compound C2, a Dioxolane steroid, displayed the strongest inhibition on both AChE and BChE activities for further consideration.  相似文献   

11.
Central cholinergic systems are involved in a plethora of brain functions and are severely and selectively damaged in neurodegenerative diseases such as Alzheimer's disease and dementia with Lewy bodies. Cholinergic dysfunction is treated with inhibitors of acetylcholinesterase (AChE) while the role of butyrylcholinesterase (BChE) for brain cholinergic function is unclear. We have used in vivo microdialysis to investigate the regulation of hippocampal acetylcholine (ACh) levels in mice that are devoid of AChE (AChE-/- mice). Extracellular ACh levels in the hippocampus were 60-fold elevated in AChE-/- mice compared with wild-type (AChE+/+) animals. In AChE-/- mice, calcium-free conditions reduced hippocampal ACh levels by 50%, and infusion of tetrodotoxin by more than 90%, indicating continuous ACh release. Infusion of a selective AChE inhibitor (BW284c51) caused a dose-dependent, up to 16-fold increase of extracellular ACh levels in AChE+/+ mice but did not change ACh levels in AChE-/- mice. In contrast, infusion of a selective inhibitor of BChE (bambuterol) caused up to fivefold elevation of ACh levels in AChE-/- mice, but was without effect in AChE+/+ animals. These results were corroborated with two other specific inhibitors of AChE and BChE, tolserine and bis-norcymserine, respectively. We conclude that lack of AChE causes dramatically increased levels of extracellular ACh in the brain. Importantly, in the absence of AChE, the levels of extracellular ACh in the brain are controlled by the activity of BChE. These results point to a potential usefulness of BChE inhibitors in the treatment of central cholinergic dysfunction in which brain AChE activity is typically reduced.  相似文献   

12.
Acetylcholinesterase inhibitors (AChEIs) are currently the drugs of choice, although only symptomatic and palliative, for the treatment of Alzheimer’s disease (AD). Donepezil is one of most used AChEIs in AD therapy, acting as a dual binding site, reversible inhibitor of AChE with high selectivity over butyrylcholinesterase (BChE). Through a combined target- and ligand-based approach, a series of coumarin alkylamines matching the structural determinants of donepezil were designed and prepared. 6,7-Dimethoxycoumarin derivatives carrying a protonatable benzylamino group, linked to position 3 by suitable linkers, exhibited fairly good AChE inhibitory activity and a high selectivity over BChE. The inhibitory potency was strongly influenced by the length and shape of the spacer and by the methoxy substituents on the coumarin scaffold. The inhibition mechanism, assessed for the most active compound 13 (IC50 7.6 nM) resulted in a mixed-type, thus confirming its binding at both the catalytic and peripheral binding sites of AChE.  相似文献   

13.
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder, which affected 35 million people in the world. The most practiced approach to improve the life expectancy of AD patients is to increase acetylcholine neurotransmitter level at cholinergic synapses by inhibition of cholinesterase enzymes. A series of unreported piperidone grafted spiropyrrolidines 8(a-p) were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Therein, compounds 8h and 8l displayed more potent AChE enzyme inhibition than standard drug with IC50 values of 1.88 and 1.37 µM, respectively. Molecular docking simulations for 8l possessing the most potent AChE inhibitory activities, disclosed its interesting binding templates to the active site channel of AChE enzymes. These compounds are remarkable AChE inhibitors and have potential as AD drugs.  相似文献   

14.
A small library of (E) α,β-unsaturated fatty acids was prepared, and 20 different saturated and mono-unsaturated fatty acids differing in chain length were subjected to Ellman’s assays to determine their ability to act as inhibitors for AChE or BChE. While the compounds were only very weak inhibitors of BChE, seven molecules were inhibitors of AChE holding IC50?=?4.3–12.8?M with three of them as significant inhibitors of this enzyme. The results have shown trans 2-mono-unsaturated fatty acids are better inhibitors for AChE than their saturated analogs. Furthermore, the screening results indicate that the chain length is crucial for obtaining an inhibitory efficacy. The best results were obtained for (2E) eicosenoic acid (14) showing inhibition constants Ki?=?1.51?±?0.09?M and Ki′?=?7.15?±?0.55?M. All tested compounds were mixed-type inhibitors with a dominating competitive part. Molecular modelling calculations indicate a different binding mode of active/inactive compounds for the enzymes AChE and BChE.  相似文献   

15.
To explore new scaffolds for the treat of Alzheimer’s disease appears to be an inspiring goal. In this context, a series of varyingly substituted flavonols and 4-thioflavonols have been designed and synthesized efficiently. All the newly synthesized compounds were characterized unambiguously by common spectroscopic techniques (IR, 1H-, 13C NMR) and mass spectrometry (EI-MS). All the derivatives (124) were evaluated in vitro for their inhibitory potential against cholinesterase enzymes. The results exhibited that these derivatives were potent selective inhibitors of acetylcholinesterase (AChE), except the compound 11 which was selective inhibitor of butyrylcholinesterase (BChE), with varying degree of IC50 values. Remarkably, the compounds 20 and 23 have been found the most potent almost dual inhibitors of AChE and BChE amongst the series with IC50 values even less than the standard drug. The experimental results in silico were further validated by molecular docking studies in order to find their binding modes with the active pockets of AChE and BChE enzymes.  相似文献   

16.
Cholinesterases catalyze the breakdown of the neurotransmitter acetylcholine (ACh), a naturally occurring neurotransmitter, into choline and acetic acid, allowing the nervous system to function properly. In the human body, cholinesterases come in two types, including acetylcholinesterase (AChE; E.C.3.1.1.7) and butyrylcholinesterase (BChE; E.C.3.1.1.8). Both cholinergic enzyme inhibitors are essential in the biochemical processes of the human body, notably in the brain. On the other hand, GSTs are found all across nature and are the principal Phase II detoxifying enzymes in eukaryotes and prokaryotes. Specific isozymes are identified as therapeutic targets because they are overexpressed in various malignancies and may have a role in the genesis of other diseases such as neurological disorders, multiple sclerosis, asthma, and especially cancer cell. Piperazine chemicals have a role in many biological processes and have fascinating pharmacological properties. As a result, therapeutically effective piperazine research is becoming more prominent. Half maximal inhibition concentrations (IC50) of piperazine derivatives were found in ranging of 4.59–6.48 µM for AChE, 4.85–8.35 µM for BChE, and 3.94-8.66 µM for GST. Also, piperazine derivatives exhibited Ki values of 8.04 ± 5.73–61.94 ± 54.56, 0.24 ± 0.03–32.14 ± 16.20, and 7.73 ± 1.13–22.97 ± 9.10 µM toward AChE, BChE, and GST, respectively. Consequently, the inhibitory properties of the AChE/BChE and GST enzymes have been compared to Tacrine (for AChE and BChE) and Etacrynic acid (for GST).  相似文献   

17.
Indanone derivatives containing meta/para-substituted aminopropoxy benzyl/benzylidene moieties were designed based on the structures of donepezil and ebselen analogs as the cholinesterase inhibitors. The designed compounds were synthesized and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were measured. Inhibitory potencies (IC50 values) for the synthesized compounds ranged from 0.12 to 11.92 μM and 0.04 to 24.36 μM against AChE and BChE, respectively. Compound 5 c showed the highest AChE inhibitory potency with IC50 value of 0.12 μM, whereas the highest BChE inhibition was achieved by structure 7 b (IC50=0.04 μM). Structure-activity relationship (SAR) analysis revealed that there is no significant difference between meta and para-substituted derivatives in AChE and BChE inhibition. However, the most potent AChE inhibitor 5 c belongs to meta-substituted compounds, while the most active BChE inhibitor is para-substituted derivative 7 b . The order of enzyme inhibition potency based on the substituted amine group is dimethyl amine>piperidine>morpholine. Compounds containing C=C linkage are more potent AChE inhibitors than the corresponding saturated structures. Molecular docking studies indicated that 5 c interacts with AChE in a very similar way to that observed experimentally for donepezil. The introduced indanone-aminopropoxy benzylidenes could be used in drug-discovery against Alzheimer's disease.  相似文献   

18.
Using the acylation reaction with tosyl chloride of N-aminopropyl analogues of tacrine and its cyclic homologues with different size of the aliphatic cycle (5–8), we synthesized a number of new derivatives of p-toluenesulfonamide. It is shown that the synthesized hybrid compounds of tacrine and p-toluenesulfonamide are effective inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with the preferential inhibition of BChE. They also displace propidium from the peripheral anionic site of the electric eel AChE (Electrophorus electricus). The characteristics of the efficiency and selectivity of cholinesterase inhibition by the test compounds were confirmed by the results of molecular docking.  相似文献   

19.
A series of 31 N,N-disubstituted 2-amino-5-halomethyl-2-thiazolines was designed, synthesized, and evaluated for inhibitory potential against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterase (CaE). The compounds did not inhibit AChE; the most active compounds inhibited BChE and CaE with IC50 values of 0.22–2.3 μM. Pyridine-containing compounds were more selective toward BChE; compounds with the para-OMe substituent in one of the two dibenzyl fragments were more selective toward CaE. Iodinated derivatives were more effective BChE inhibitors than brominated ones, while there was no influence of halogen type on CaE inhibition. Inhibition kinetics for the 9 most active compounds indicated non-competitive inhibition of CaE and varied mechanisms (competitive, non-competitive, or mixed-type) for inhibition of BChE. Docking simulations predicted key binding interactions of compounds with BChE and CaE and revealed that the best docked positions in BChE were at the bottom of the gorge in close proximity to the catalytic residues in the active site. In contrast, the best binding positions for CaE were clustered rather far from the active site at the top of the gorge. Thus, the docking results provided insight into differences in kinetic mechanisms and inhibitor activities of the tested compounds. A cytotoxicity test using the MTT assay showed that within solubility limits (<30 μM), none of the tested compounds significantly affected viability of human fetal mesenchymal stem cells. The results indicate that a new series of N,N-disubstituted 2-aminothiazolines could serve as BChE and CaE inhibitors for potential medicinal applications.  相似文献   

20.
Bambuterol is a chiral carbamate known as selective inhibitor of butyrylcholinesterase (BChE). In order to relate bambuterol selectivity and stereoselectivity of cholinesterases to the active site residues, we studied the inhibition of recombinant mouse BChE, acetylcholinesterase (AChE) and six AChE mutants, employed to mimic BChE active site residues, by bambuterol enantiomers. Both enantiomers selectively inhibited BChE about 8000 times faster than AChE. The largest inhibition rate increase in comparison to AChE w.t. was observed with the F295L/Y337A mutant, showing that leucine 295 and alanine 337 are crucial residues in BChE for high bambuterol selectivity. All studied enzymes preferred inhibition by the R- over the S-bambuterol. The enlargement of the AChE choline binding site and of the acyl pocket by single or double mutations (Y337A, F295L/Y337A and F297I/Y337A) increased, in comparison to w.t. enzymes, inhibition rate constants of R- bambuterol more than that of S- bambuterol resulting in four times higher stereoselectivity. Peripheral site mutations (Y124Q and Y72N/Y124Q/Y337A) increased inhibition rate by S- more than R-bambuterol and consequently diminished the stereoselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号