首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitory glutamate receptor channels   总被引:5,自引:0,他引:5  
Inhibitory glutamate receptors (IGluRs) are a family of ion channel proteins closely related to ionotropic glycine and γ-aminobutyric acid (GABA) receptors; They are gated directly by glutamate; the open channel is permeable to chloride and sometimes potassium. Physiologically and pharmacologically, IGluRs most closely resemble GABA receptors; they are picrotoxin-sensitive and sometimes crossdesensitized by GABA. However, the amino acid sequences of cloned IGluRs are most similar to those of glycine receptors. Ibotenic acid, a conformationally restricted glutamate analog closely related to muscimol, activates all IGluRs. Quisqualate is not an IGluR agonist except among pulmonate molluscs and for a unique multiagonist receptor in the crayfishAustropotamobius torrentium. Other excitatory amino acid agonists are generally ineffective. Avermectins have several effects on IGluRs, depending on concentration: potentiation, direct gating, and blockade, both reversible and irreversible. Since IGluRs have only been clearly described in protostomes and pseudocoelomates, these effects may mediate the powerful antihelminthic and insecticidal action of avermectins, while explaining their low toxicity to mammals. IGluRs mediate synaptic inhibition in neurons and are expressed extrajunctionally in striated muscles. The presence of IGluRs in a neuron or muscle is independent of the presence or absence of excitatory glutamate receptors or GABA receptors in the cell. Generally, extrajunctional IGluRs in muscle have a higher sensitivity to glutamate than do neuronal synaptic receptors. Some extrajunctional receptors are sensitive in the range of circulating plasma glutamate levels, suggesting a role for IGluRs in regulating muscle excitability. The divergence of the IGlu/GABA/Gly/ACh receptor superfamily in protostomes could become a powerful model system for adaptive molecular evolution. Physiologically and pharmacologically, protostome receptors are considerably more diverse than their vertebrate counterparts. Antagonist profiles are only loosely correlated with agonist profiles (e.g., curare-sensitive GABA receptors, bicuculline-sensitive AChRs), and pharmacologically identical receptors may be either excitatory or inhibitory, and permeable to different ions. The assumption that agonist sensitivity reliably connotes discrete, homologous receptor families is contraindicated. Protostome ionotropic receptors are highly diverse and straightforward to assay; they provide an excellent system in which to study and integrate fundamental questions in molecular evolution and adaptation.  相似文献   

2.
Homologation of glutamic acid chain together with conformational constraint is a commonly used strategy to achieve selectivity towards different types of glutamate receptors. In the present work, starting from two potent and selective unnatural amino acids previously developed by us, we investigated the effects on the activity/selectivity profile produced by a further increase in the distance between the amino acidic moiety and the distal carboxylate group. Interestingly, the insertion of an aromatic ring as a spacer produced a low micromolar affinity NMDA ligand that might represent a lead for the development of a new class of NMDA antagonists.  相似文献   

3.
Stacking interaction is known to play an important role in protein folding, enzyme-substrate and ligand-receptor complex formation. It has been shown to make a contribution into the aromatic antagonists binding with glutamate ionotropic receptors (iGluRs), in particular, the complex of NMDA receptor NR1 subunit with the kynurenic acid (KYNA) derivatives. The specificity of KYNA binding to the glutamate receptors subtypes might partially result from the differences in stacking interaction. We have calculated the optimal geometry and binding energy of KYNA dimers with the four types of aromatic amino acid residues in Rattus and Drosophila ionotropic iGluR subunits. All ab initio quantum chemical calculations were performed taking into account electron correlations at MP2 and MP4 perturbation theory levels. We have also investigated the potential energy surfaces (PES) of stacking and hydrogen bonds (HBs) within the receptor binding site and calculated the free energy of the ligand-receptor complex formation. The energy of stacking interaction depends both on the size of aromatic moieties and the electrostatic effects. The distribution of charges was shown to determine the geometry of polar aromatic ring dimers. Presumably, stacking interaction is important at the first stage of ligand binding when HBs are weak. The freedom of ligand movements and rotation within receptor site provides the precise tuning of the HBs pattern, while the incorrect stacking binding prohibits the ligand-receptor complex formation.  相似文献   

4.
The metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors involved in the regulation of glutamatergic synapses. Surprisingly, the evolution-arily distant Drosophila mGluR shares a very similar pharmacological profile with its mammalian orthologues (mGlu2R and mGlu3R). Such a conservation in ligand recognition indicates a strong selective pressure during evolution to maintain the ligand recognition selectivity of mGluRs and suggests that structural constraints within the ligand binding pocket (LBP) would hinder divergent evolution. Here we report the identification of a new receptor homologous to mGluRs found in Anopheles gambiae, Apis mellifera, and Drosophila melanogaster genomes and called AmXR, HBmXR, and DmXR, respectively (the mXRs group). Sequence comparison associated with three-dimensional modeling of the LBP revealed that the residues contacting the amino acid moiety of glutamate (the alpha-COO(-) and NH(3)(+) groups) were conserved in mXRs, whereas the residues interacting with the gamma-carboxylic group were not. This suggested that the mXRs evolved to recognize an amino acid different from glutamate. The Drosophila cDNA encoding DmXR was isolated and found to be insensitive to glutamate or any other standard amino acid. However, a chimeric receptor with the heptahelical and intracellular domains of DmXR coupled to G-protein. We found that the DmX receptor was activated by a ligand containing an amino group, which was extracted from Drosophila head and from other insects (Anopheles and Schistocerca). No orthologue of mXR could be detected in Caenorhabditis elegans or human genomes. These data indicate that the LBP of the mGluRs has diverged in insects to recognize a new ligand.  相似文献   

5.
Lysine is a nutritionally important essential amino acid whose level in plants is largely regulated by the rate of its synthesis. In some plant tissues and under some stress conditions, however, lysine is also efficiently catabolized into glutamate and several other stress-related metabolites by novel mechanisms of metabolic regulation. Lysine catabolism is important for mammalian brain function; it is possible that the generation of glutamate regulates nerve transmission signals via glutamate receptors. Plants also possess homologues of animal glutamate receptors. It is thus likely that lysine catabolism also regulates various plant processes via these receptors.  相似文献   

6.
Oxidative glutamate toxicity in the neuronal cell line HT22 is a model for cell death by oxidative stress. In this paradigm, an excess of extracellular glutamate blocks the glutamate/cystine-antiporter system Xc-, depleting the cell of cysteine, a building block of the antioxidant glutathione. Loss of glutathione leads to the accumulation of reactive oxygen species and eventually cell death. We selected cells resistant to oxidative stress, which exhibit reduced glutamate-induced glutathione depletion mediated by an increase in the antiporter subunit xCT and system Xc- activity. Cystine uptake was less sensitive to inhibition by glutamate and we hypothesized that glutamate import via excitatory amino acid transporters and immediate re-export via system Xc- underlies this phenomenon. Inhibition of glutamate transporters by l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) and DL-threo-beta-benzyloxyaspartic acid (TBOA) exacerbated glutamate-induced cell death. PDC decreased intracellular glutamate accumulation and exacerbated glutathione depletion in the presence of glutamate. Transient overexpression of xCT and the glutamate transporter EAAT3 cooperatively protected against glutamate. We conclude that EAATs support system Xc- to prevent glutathione depletion caused by high extracellular glutamate. This knowledge could be of use for the development of novel therapeutics aimed at diseases associated with depletion of glutathione like Parkinson's disease.  相似文献   

7.
Shen Y  Linden DJ 《Neuron》2005,46(5):715-722
Persistent, use-dependent modulation of synaptic strength has been demonstrated for fast synaptic transmission mediated by glutamate and has been hypothesized to underlie persistent behavioral changes ranging from memory to addiction. Glutamate released at synapses is sequestered by the action of excitatory amino acid transporters (EAATs) in glia and postsynaptic neurons. So, the efficacy of glutamate transporter function is crucial for regulating glutamate spillover to adjacent presynaptic and postsynaptic receptors and the consequent induction of plastic or excitotoxic processes. Here, we report that tetanic stimulation of cerebellar climbing fiber-Purkinje cell synapses results in long-term potentiation (LTP) of a climbing fiber-evoked glutamate transporter current recorded in Purkinje cells. This LTP is postsynaptically expressed and requires activation of an mGluR1/PKC cascade. Together with a simultaneously induced long-term depression (LTD) of postsynaptic AMPA receptors, this might reflect an integrated antiexcitotoxic cellular response to strong climbing fiber synaptic activation, as occurs following an ischemic episode.  相似文献   

8.
Branched-chain amino acid aminotransferase (BCAT), which has pyridoxal 5'-phosphate as a cofactor, is a key enzyme in the biosynthetic pathway of hydrophobic amino acids (leucine, isoleucine, and valine). The enzyme reversibly catalyzes the transfer of the amino group of a hydrophobic amino acid to 2-oxoglutarate to form a 2-oxo acid and glutamate. Therefore, the active site of BCAT should have a mechanism to enable recognition of an acidic amino acid as well as a hydrophobic amino acid (double substrate recognition). The three-dimensional structures of Escherichia coli BCAT (eBCAT) in complex with the acidic substrate (glutamate) and the acidic substrate analogue (glutarate) have been determined by X-ray diffraction at 1.82 and 2.15 A resolution, respectively. The enzyme is a homo hexamer, with the polypeptide chain of the subunit folded into small and large domains, and an interdomain loop. The eBCAT in complex with the natural substrate, glutamate, was assigned as a ketimine as the most probable form based upon absorption spectra of the crystal complex and the shape of the residual electron density corresponding to the cofactor-glutamate bond structure. Upon binding of an acidic substrate, the interdomain loop approaches the substrate to shield it from the solvent region, as observed in the complex with a hydrophobic substrate. Both the acidic and the hydrophobic side chains of the substrates are bound to almost the same position in the pocket of the enzyme and are identical in structure. The inner side of the pocket is mostly hydrophobic to accommodate the hydrophobic side chain but has four sites to coordinate with the gamma-carboxylate of glutamate. The mechanism for the double substrate recognition observed in eBCAT is in contrast to those in aromatic amino acid and histidinol-phosphate aminotransferases. In an aromatic amino acid aminotransferase, the acidic side chain is located at the same position as that for the aromatic side chain because of large-scale rearrangements of the hydrogen bond network. In the histidinol-phosphate aminotransferase, the acidic and basic side chains are located at different sites and interact with different residues of the disordered loop.  相似文献   

9.
The effects of several metabotropic receptor (mGluR) ligands on baseline hippocampal glutamate and GABA overflow in conscious rats and the modulation of limbic seizure activity by these ligands were investigated. Intrahippocampal mGluR group I agonist perfusion via a microdialysis probe [1 mm (R,S)-3,5-dihydroxyphenylglycine] induced seizures and concomitant augmentations in amino acid dialysate levels. The mGlu1a receptor antagonist LY367385 (1 mm) decreased baseline glutamate but not GABA concentrations, suggesting that mGlu1a receptors, which regulate hippocampal glutamate levels, are tonically activated by endogenous glutamate. This decrease in glutamate may contribute to the reported LY367385-mediated anticonvulsant effect. The mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (50 mg/kg) also clearly abolished pilocarpine-induced seizures. Agonist-mediated actions at mGlu2/3 receptors by LY379268 (100 microm, 10 mg/kg intraperitoneally) decreased basal hippocampal GABA but not glutamate levels. This may partly explain the increased excitation following systemic LY379268 administration and the lack of complete anticonvulsant protection within our epilepsy model with the mGlu2/3 receptor agonist. Group II selective mGluR receptor blockade with LY341495 (1-10 microm) did not alter the rats' behaviour or hippocampal amino acid levels. These data provide a neurochemical basis for the full anticonvulsant effects of mGlu1a and mGlu5 antagonists and the partial effects observed with mGlu2/3 agonists in vivo.  相似文献   

10.
《Cellular signalling》2014,26(10):2284-2297
The metabotropic glutamate (mGlu) receptors are a group of Class C seven-transmembrane spanning/G protein-coupled receptors (7TMRs/GPCRs). These receptors are activated by glutamate, one of the standard amino acids and the major excitatory neurotransmitter. By activating G protein-dependent and non-G protein-dependent signaling pathways, mGlus modulate glutamatergic transmission both in the periphery and throughout the central nervous system. Since the discovery of the first mGlu receptor, and especially during the last decade, a great deal of progress has been made in understanding the signaling, structure, pharmacological manipulation and therapeutic indications of the 8 mGlu members.  相似文献   

11.
N1-substituted bicyclic pyrazole amino acids (S)-9a-9c and (R)-9a-9c, which are conformationally constrained analogues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested for activity at ionotropic and metabotropic glutamate receptors. Some of them turned out to be selective for the NMDA receptors, where they behaved as weak antagonists. The biological activity is mainly due to the interaction with the glutamate binding site, and not with the glycine co-agonist site.  相似文献   

12.
Summary The strong excitatory activity of L-glutamic acid on central nervous system neurons is thought to be produced by interaction of this amino acid with specific neuronal plasma membrane receptors. The binding of L-glutamate to these surface receptors brings about an increase in membrane permeability to Na+ and Ca2+ ions presumably through direct activation of ion channels linked to the membrane receptors. The studies described in this paper represent attempts to define the subcellular distribution and pharmacological properties of the recognition site for L-glutamic acid in brain neuronal preparations, to isolate and explore the molecular characteristics of the receptor recognition site, and, finally, to demonstrate the activation of Na+ channels in synaptic membranes following the interaction of glutamate with its receptors.Radioligand binding assays with L-[3H] glutamic acid have been used to demonstrate a relative enrichment of these glutamate recognition sites in isolated synaptic plasma membranes. The specific binding of L-[3H] glutamate to these membrane sites exhibits rapid association and dissociation kinetics and rather complex equilibrium binding kinetics. The glutamate binding macromolecule from synaptic membranes has been solubilized and purified and was shown to be a small molecular weight glycoprotein (MT 13 000). This protein tends to form aggregates which have higher specific activity at low concentrations of glutamate than the MT 13 000 protein has. The overall affinity of the purified protein is lower than that of the high affinity sites in the membrane. Nevertheless, the purified protein exhibits pharmacological characteristics very similar to those of the membrane binding sites. On the basis of its pharmacological properties this protein belongs in the category of the physiologic glutamate preferring receptors.By means of differential solubilization of membrane proteins with Na-cholate, it was shown that this recognition site is an intrinsic synaptic membrane protein whose binding activity is enhanced rather than diminished by cholate extraction of the synaptic membranes. The role of membrane constituents in regulating the binding activity of this protein has been explored and a possible modulation of glutamate binding by membrane gangliosides has been demonstrated. Finally, this glutamate binding glycoprotein is a metalloprotein whose activity is dependent on the integrity of its metallic (Fe) center. This is a clear distinguishing characteristic of this protein vis-à-vis the glutamate transport carriers.The presence of functional glutamate receptors in synaptosomes and resealed synaptic plasma membranes has also been documented by the demonstration of glutamate-activated Na+ flux across the membrane of these preparations. The bidirectionality, temperature independence, and apparent desensitization of this stimulated flux following exposure to high concentrations of glutamate are properties indicative of a receptor-initiated ion channel activation. It would appear, then, that the synaptic membrane preparations provide a very useful system for the study of both recognition and effector function of the glutamate receptor complex.  相似文献   

13.
Quinolinic acid (QA) is an endogenous neurotoxin involved in various neurological diseases, whose action seems to be exerted via glutamatergic receptors. However, the exact mechanism responsible for the neurotoxicity of QA is far from being understood. We have previously reported that QA inhibits vesicular glutamate uptake. In this work, investigating the effects of QA on the glutamatergic system from rat brain, we have demonstrated that QA (from 0.1 to 10mM) had no effect on synaptosomal L-[3H]glutamate uptake. The effect of QA on glutamate release in basal (physiological K+ concentration) or depolarized (40 mM KCl) conditions was evaluated. QA did not alter K+-stimulated glutamate release, but 5 and 10mM QA significantly increased basal glutamate release. The effect of dizolcipine (MK-801), a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor on glutamate release was investigated. MK-801 (5 microM) did not alter glutamate release per se, but completely abolished the QA-induced glutamate release. NMDA (50 microM) also stimulated glutamate release, without altering QA-induced glutamate release, suggesting that QA effects were exerted via NMDA receptors. QA (5 and 10mM) decreased glutamate uptake into astrocyte cell cultures. Enhanced synaptosomal glutamate release, associated with inhibition of glutamate uptake into astrocytes induced by QA could contribute to increase extracellular glutamate concentrations which ultimately lead to overstimulation of the glutamatergic system. These data provide additional evidence that neurotoxicity of QA may be also related to disturbances on the glutamatergic transport system, which could result in the neurological manifestations observed when this organic acid accumulates in the brain.  相似文献   

14.
The amino acid L-glutamate mediates signals at excitatory synapses in the CNS where its effects are controlled by co-ordinated activities of various types of glutamate receptor and transporter. This signalling mechanism has proved to be far more ubiquitous with many different cell types responding to glutamate. The glutamate transporter GLAST-1 was the first component of this pathway identified in bone where its expression was found to be mechanoresponsive in osteocytes. There is now a wealth of evidence supporting a role for this signalling mechanism in bone. Osteoblasts can release glutamate in a regulated manner and express functional glutamate receptors that influence their differentiation and osteogenic activity. Likewise, osteoclasts express functional glutamate receptors that influence their bone resorbing capacity. This article considers the various functions of glutamate transporters in this signalling pathway, and the evidence supporting an important role of glutamate signalling in regulating bone cell activities.  相似文献   

15.
16.
Identification of intercellular signalling pathways in bone represents an important therapeutic target for drug development in the treatment of clinical conditions such as osteoporosis. One such intercellular signalling pathway in bone appears to be mediated by the excitatory amino acid glutamate, exhibiting remarkable similarities to synaptic neurotransmission. Bone cells (osteoblasts and osteoclasts) express functional glutamate receptors that are electrophysiologically and pharmacologically similar to those expressed in the CNS and there is evidence for their involvement in both bone formation and bone resorption. However, to date the cellular source of glutamate for the activation of these specific glutamatergic receptors in bone has remained unclear. This review provides a synopsis of our current understanding of these 'pre-synaptic' signalling mechanisms, presenting compelling evidence that osteoblasts possess the molecular capability to direct regulated vesicular glutamate release in response to osteotropic regulatory inputs. In addition, we discuss mechanisms other than 'pre-synaptic' glutamatergic mechanisms that could account for the source of glutamate for receptor activation in osteoblasts. Finally, convincing evidence reporting physiologically released glutamate in varied osteoblasts and osteoblastic cell lines is discussed. The overwhelming conclusion of this review is that by defining both the characteristics and regulatory control of this process, highlighting both similarities and differences between the CNS and bone may provide compelling evidence for the role of glutamate in bone cell function and physiology.  相似文献   

17.
Pharmacologically distinct glutamate receptors on cerebellar granule cells   总被引:9,自引:0,他引:9  
J Drejer  T Honoré  E Meier  A Schousboe 《Life sciences》1986,38(23):2077-2085
Cultured cerebellar granule cells were found to exhibit calcium-dependent release of 3H-D-aspartate when stimulated with excitatory amino acids. L-glutamate and L-aspartate were found to be potent stimulators of 3H-D-aspartate release, D-aspartate was weaker and only minor effects were seen with D-glutamate, quisqualate, kainate, N-methyl-D-aspartate (NMDA) and L-alpha-aminoadipate (L-alpha AA). It was also found that only L-glutamate and L-aspartate showed high affinity for the 3H-L-glutamate binding sites on granule cell membranes. Stimulation by L-glutamate of 3H-D-aspartate release could be blocked by various excitatory amino acid antagonists. From the relative potencies of agonists and antagonists on D-aspartate release it is suggested that cerebellar granule cells express functionally active glutamate receptors with pharmacological characteristics different from all known excitatory amino acid receptors.  相似文献   

18.
As part of the vital search towards improved therapeutic agents for the treatment of neuropathic pain, the central nervous system glutamate receptors have become a major focus of research. Outlined herein are the syntheses of two new biologically active 3′-cycloalkyl-substituted carboxycyclopropylglycines, utilizing novel synthetic chemistry. The reaction between substituted 1,2-dioxines and an aminophosphonate furnished the cyclopropane core in a single step with all required stereochemistry of pendant groups. In vitro binding assays at metabotropic glutamate receptors revealed selective activity. In vivo testing in a rodent model of neuropathic pain indicated one amino acid significantly and dose-dependently decreased mechanical allodynia.  相似文献   

19.
L-Proline inhibits glutamate-based spreading depressions (SDs) at low concentrations (2--2.5 mM) and promotes K+-based SDs at higher concentrations (5 mM). The inhibition of glutamate-based SDs was postulated to be due to competition of L-glutamate and L-proline for glutamate receptors on somatic and dendritic plasma membranes. The binding of proline to glutamate receptors was furthermore postulated to result in a release of K+ from the intracellular compartment, enhancing the extracellular K+ concentration sufficiently to promote K+-based SDs. A proline analog, L-baikiain, containing a double bond and one more C atom in the ring structure than proline had similar effects as the latter amino acid, but an analog, L-azetidine-2-carboxylic acid, with one less C atom in the ring had little effect on SD in the retina.  相似文献   

20.
The role of an 18-residue ion-pair network, that is present in the glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus, in conferring stability to other, less stable homologous enzymes, has been studied by introducing four new charged amino acid residues into the subunit interface of glutamate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. These two GDHs are 55 % identical in amino acid sequence, differ greatly in thermo-activity and stability and derive from microbes with different phylogenetic positions. Amino acid substitutions were introduced as single mutations as well as in several combinations. Elucidation of the crystal structure of the quadruple mutant S128R/T158E/N117R/S160E T. maritima glutamate dehydrogenase showed that all anticipated ion-pairs are formed and that a 16-residue ion-pair network is present. Enlargement of existing networks by single amino acid substitutions unexpectedly resulted in a decrease in resistance towards thermal inactivation and thermal denaturation. However, combination of destabilizing single mutations in most cases restored stability, indicating the need for balanced charges at subunit interfaces and high cooperativity between the different members of the network. Combination of the three destabilizing mutations in triple mutant S128R/T158E/N117R resulted in an enzyme with a 30 minutes longer half-life of inactivation at 85 degrees C, a 3 degrees C higher temperature optimum for catalysis, and a 0.5 degrees C higher apparent melting temperature than that of wild-type glutamate dehydrogenase. These findings confirm the hypothesis that large ion-pair networks do indeed stabilize enzymes from hyperthermophilic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号