首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(S)-Glutamic acid (Glu), the major excitatory neurotransmitter in the central nervous system, operates through ionotropic as well as metabotropic receptors and is considered to be involved in certain neurological disorders and degenerative brain diseases that are currently without any satisfactory therapeutic treatment. Until recently, development of selective Glu receptor agonists had mainly been based on lead compounds, which were frequently naturally occurring excitants structurally related to Glu. These Glu receptor agonists generally contain heterocyclic acidic moieties, which has stimulated the use of bioisosteric replacement approaches for the design of subtype-selective agonists. Furthermore, most of these leads are conformationally restricted and stereochemically well-defined Glu analogs. Crystallization of the agonist binding domain of the GluR2 subunit of the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of ionotropic Glu receptors in the presence or absence of an agonist has provided important information about ligand-receptor interaction mechanisms. The availability of these binding domain crystal structures has formed the basis for rational design of ligands, especially for the AMPA and kainate subtypes of ionotropic Glu receptors. This mini-review will focus on structure-activity relationships on AMPA and kainate receptor agonists with special emphasis on stereochemical and three-dimensional aspects.  相似文献   

2.
We report the synthesis and characterization of amino acid ester based chiral ionic liquids, derived from L- and D-alanine tert butyl ester chloride. The synthesis was accomplished via an anion metathesis reaction between commercially available L- and D-alanine tert butyl ester chloride using a variety of counterions such as lithium bis (trifluoromethane) sulfonimide, silver nitrate, silver lactate, and silver tetrafluoroborate. Both enantiomeric forms were obtained as confirmed by bands of opposite sign in the circular dichroism spectra. The L- and D-alanine tert butyl ester bis (trifluoromethane) sulfonimide were obtained as liquids at room temperature and intriguingly exhibited the highest thermal stability (up to 263 degrees C). In addition, the ionic liquids demonstrated enantiomeric recognition ability as evidenced by splitting of racemic Mosher's sodium salt signal using a liquid state (19)F nuclear magnetic resonance (NMR) and fluorescence spectroscopy. The L- and D-alanine tert butyl ester chloride resulted in solid salts with nitrate, lactate, and tetrafluoroborate anions. This illustrates the previously observed tunability of ionic liquid synthesis, resulting in ionic liquids of varying properties as a function of varying the anion.  相似文献   

3.
Summary. We used two approaches to identify sequence variants in ionotropic glutamate receptor (IGR) genes: high-throughput screening and resequencing techniques, and information mining of public (e.g. dbSNP, ENSEMBL) and private (i.e. Celera Discovery System) sequence databases. Each of the 16 known IGRs is represented in these databases, their positions on a canonical physical map are established. Comparisons of mouse, rat, and human sequences revealed substantial conservation among these genes, which are located on different chromosomes but found within syntenic groups of genes. The IGRs are members of a phylogenetically ancient gene family, sharing similarities with glutamate-like receptors in plants. Parsimony analysis of amino acid sequences groups the IGRs into three distinct clades based on ligand-binding specificity and structural features, such as the channel pore and membrane spanning domains. A collection of 38 variants with amino acid changes was obtained by combining screening, resequencing, and informatics approaches for several of the IGR genes. This represents only a fraction of the sequence variation across these genes, but in fact these may constitute a large fraction of the common polymorphisms at these genes and these polymorphisms are a starting point for understanding the role of these variants in function.Genetically influenced human neurobehavioral phenotypes are likely to be linked to IGR genetic variants. Because ionotropic glutamate receptor activation leads to calcium entry, which is fundamental in brain development and in forms of synaptic plasticity essential for learning and memory and is essential for neuronal survival, it is likely that sequence variants in IGR genes may have profound functional roles in neuronal activation and survival mechanisms.  相似文献   

4.
Hypothermia is a known approach in the treatment of neurological pathologies. Mild hypothermia enhances the therapeutic window for application of medicines, while deep hypothermia is often accompanied by complications, including problems in the recovery of brain functions. The purpose of present study was to investigate the functioning of glutamate ionotropic receptors in brain slices cooled with different rates during mild, moderate and deep hypothermia. Using a system of gradual cooling combined with electrophysiological recordings in slices, we have shown that synaptic activity mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in rat olfactory cortex was strongly dependent on the rate of lowering the temperature. High cooling rate caused a progressive decrease in glutamate receptor activity in brain slices during gradual cooling from mild to deep hypothermia. On the contrary, low cooling rate slightly changed the synaptic responses in deep hypothermia. The short-term potentiation may be induced in slices by electric tetanization at 16  °C in this case. Hence, low cooling rate promoted preservation of neuronal activity and plasticity in the brain tissue.  相似文献   

5.
Dror Tobi 《Proteins》2016,84(2):267-277
The dynamics of the ligand‐binding domain (LBD) and the intact ionotropic glutamate receptor (iGluR) were studied using Gaussian Network Model (GNM) analysis. The dynamics of LBDs with various allosteric modulators is compared using a novel method of multiple alignment of GNM modes of motion. The analysis reveals that allosteric effectors change the dynamics of amino acids at the upper lobe interface of the LBD dimer as well as at the hinge region between the upper‐ and lower‐ lobes. For the intact glutamate receptor the analysis show that the clamshell‐like movement of the LBD upper and lower lobes is coupled to the bending of the trans‐membrane domain (TMD) helices which may open the channel pore. The results offer a new insight on the mechanism of action of allosteric modulators on the iGluR and support the notion of TMD helices bending as a possible mechanism for channel opening. In addition, the study validates the methodology of multiple GNM modes alignment as a useful tool to study allosteric effect and its relation to proteins dynamics. Proteins 2016; 84:267–277. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
We have shown that acute ammonia toxicity is mediated by activation of the NMDA type of glutamate receptors. Although it is well known thatL-carnitine prevents acute ammonia toxicity, the underlying molecular mechanism is not clear. We suspected thatL-carnitine would prevent ammonia toxicity by preventing the toxic effects of glutamate. We have tested this hypothesis using primary cultures of neurons.L-carnitine prevented glutamate neurotoxicity in a dose-dependent manner similar to that required to prevent ammonia toxicity in animals. It is also shown thatL-carnitine increases selectively the affinity of glutamate for the quisqualate type of glutamate receptors, while the affinity for the kainate and NMDA receptors is slightly decreased.L-carnitine prevents the increase in cytoplasmic Ca2+ induced by addition of glutamate. The Ca2+ levels rose 4.8-fold following addition of 1 mM glutamate, however, when the neurons were incubated previously with 5 mML-carnitine, the Ca2+ levels increased only by 50%. Also, AP-3, an antagonist of the metabotropic receptor prevents the protective effect ofL-carnitine against glutamate neurotoxicity. We suggest, therefore, that the protective effect ofL-carnitine against glutamate toxicity is due to the increased affinity of glutamate for the metabotropic receptor. This mechanism could also explain the protection byL-carnitine against acute ammonia toxicity.  相似文献   

7.
We have previously described (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) as a potent agonist at the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of (S)-glutamic acid (Glu) receptors. We now report the chromatographic resolution of ACPA and (RS)-2-amino-3-(3-carboxy-4-isoxazolyl)propionic acid (demethyl-ACPA) using a Sumichiral OA-5000 column. The configuration of the enantiomers of both compounds have been assigned based on X-ray crystallographic analyses, supported by circular dichroism spectra and elution orders on chiral HPLC columns. Furthermore, the enantiopharmacology of ACPA and demethyl-ACPA was investigated using radioligand binding and cortical wedge electrophysiological assay systems and cloned metabotropic Glu receptors. (S)-ACPA showed high affinity in AMPA binding (IC(50) = 0.025 microM), low affinity in kainic acid binding (IC(50) = 3.6 microM), and potent AMPA receptor agonist activity on cortical neurons (EC(50) = 0.25 microM), whereas (R)-ACPA was essentially inactive. Like (S)-ACPA, (S)-demethyl-ACPA displayed high AMPA receptor affinity (IC(50) = 0.039 microM), but was found to be a relatively weak AMPA receptor agonist (EC(50) = 12 microM). The stereoselectivity observed for demethyl-ACPA was high when based on AMPA receptor affinity (eudismic ratio = 250), but low when based on electrophysiological activity (eudismic ratio = 10). (R)-Demethyl-ACPA also possessed a weak NMDA receptor antagonist activity (IC(50) = 220 microM). Among the enantiomers tested, only (S)-demethyl-ACPA showed activity at metabotropic receptors, being a weak antagonist at the mGlu(2) receptor subtype (K(B) = 148 microM).  相似文献   

8.
Abstract.  Drosophila larval muscles are commonly used for developmental assessment in regard to various mutations of synaptically relevant molecules. In addition, the molecular sequence of the glutamate receptors on the muscle fibre have been described; however, the pharmacological profiles to known agonists and antagonists have yet to be reported. Here, the responses of N -methyl- d -aspartic acid, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA), l -glutamate, kainate, quisqualic acid, NBQX, AP5 and DNQX are characterized with regard to synaptic transmission and direct effects on the muscle fibres. The muscle fibres depolarize to application of glutamate or quisqualate and the excitatory postsynaptic potential (EPSP) amplitudes are diminished. Kainate does not alter the muscle membrane potential but does reduce the EPSP amplitude. The known antagonists NBQX, AP5 and DNQX have no substantial effect on synaptic transmission at 1 m m , nor do they block the response of quisqualate. Kainate may be acting as a postsynaptic antagonist or via autoreceptors presynaptically to reduce evoked transmission.  相似文献   

9.
Both tyrosine phosphorylation and calpain-mediated truncation of ionotropic glutamate receptors are important mechanisms for synaptic plasticity. Previous work from our laboratory has shown that calpain activation results in truncation of the C-terminal domains of several glutamate receptor subunits. To test whether and how tyrosine phosphorylation of glutamate ionotropic receptor subunits modulates calpain susceptibility, synaptic membranes were phosphorylated by Fyn or Src, two members of the Src family tyrosine kinases. Tyrosine phosphorylation of synaptic membranes by Src significantly reduced calpain-mediated truncation of both NR2A and NR2B subunits of NMDA receptors, but not of GluR1 subunits of AMPA receptors. In contrast, phosphorylation with Fyn significantly protected calpain-mediated truncation of GluR1 subunits of AMPA receptors, but enhanced calpain-mediated truncation of NR2A subunits of NMDA receptors. Similar results were observed with NR2A and NR2B C-terminal domain fusion proteins phosphorylated by Fyn or Src before incubation with calpain and calcium. In addition, phosphorylation of NR2A and NR2B C-terminal fusion proteins by Fyn or Src enhanced their binding to spectrin and PSD-95. Thus, tyrosine phosphorylation impairs or facilitates calpain-mediated truncation of glutamate receptor subunits, depending on which tyrosine kinase is activated. Such mechanisms could serve to regulate receptor integrity and location, in addition to modulating channel properties.  相似文献   

10.
11.
Two novel 3′-substituted carboxycylopropylglycines, (2S,1′S,2′S,3′R)-2-(3′-xanthenylmethyl-2′-carboxycyclopropyl)glycine (8a) and (2S,1′S,2′S,3′R)-2-(3′-xanthenylethyl-2′-carboxycyclopropyl)glycine (8b), were synthesized and evaluated as mGluR ligands. Compound 8b showed to be a potent group II antagonist with submicromolar activity.  相似文献   

12.
Based on the broad spectrum of biological activities associated with organophosphates, a novel type of this class of compounds was synthesized, bearing a nitrile group, from the sodium alkoxide-catalyzed reaction of dialkylphosphites with γ-ketonitriles at 80 °C under solvent-free conditions. A reaction mechanism involving a phospha-Brook type rearrangement is proposed. Eight title compounds were investigated for their in vitro inhibitory potency and selectivity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using Ellman’s spectrophotometric method. The synthesized derivatives exhibited mostly a moderate activity against both cholinesterases. The IC50 values for BChE were in a smaller concentration range (5.96–23.35 µM) compared to those for AChE inhibition (9.61–53.74 µM). The diethyl-3-cyano-1-p-tolylpropylphosphate which displayed the higher dual inhibitory potency towards both cholinesterases could be considered as a potential candidate for developing new drugs to treat Alzheimer’s disease.  相似文献   

13.
Starting from the tetrahydroisoquinoline SB-277011 1, a novel series of 5-substituted-2,3-dihydro-1H-isoindoles has been designed. Subsequent optimisation resulted in identification of 19, which has high affinity for the dopamine D3 receptor (pKi 8.3) and > or = 100-fold selectivity over other aminergic receptors. In rat studies 19 was brain penetrant with an excellent pharmacokinetic profile (oral bioavailability 77%, t1/2 5.2h).  相似文献   

14.
5-Substituted 1-pyrazolol analogues of ibotenic acid have been synthesized and pharmacologically characterized on ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs). The syntheses involved introduction of bromide, alkyls, phenyl and arylalkyls in the 5-position of 1-benzyloxypyrazole leading to 5-substituted (RS)-2-amino-(1-hydroxy-4-pyrazolyl)acetic acids (5a-l). The pharmacological activities of the synthesized analogues ranged from the 5-cyclopropylmethyl analogue (5f) with weak but selective affinity for NMDA receptors (IC(50)=35 microM), over the 5-n-propyl analogue (5c), which was a selective mGluR2 agonist (EC(50)=72 microM), to the 5-cyclohexylmethyl analogue (5g), which was a selective mGluR2 antagonist (K(i)=32 microM), and the 5-phenylethyl analogue (5j), which was a weak but apparently selective mGluR1 antagonist (K(i)=230 microM). This series of compounds afforded GluR ligands with a broad spectrum of pharmacological profiles, and showing potential for development of new compounds with subtype-selective activities at various GluRs.  相似文献   

15.
Glutamate receptors have been identified on the peripheral terminals of both primary sensory afferents and sympathetic post-ganglionic neurons, and activation of these receptors produces peripheral sensitization and enhances nociception. Adenosine is an endogenous agent that has a regulatory effect on pain. In brain and spinal cord, adenosine release can be promoted by excitatory amino acids. In the present study, we used in vivo microdialysis to determine whether glutamate also can release adenosine in peripheral tissues. Rats were anesthetized with pentobarbital and microdialysis probes were implanted into the subcutaneous tissue of the plantar aspect of the rat hind paw. Subcutaneous injection of glutamate (50 microL, 0.3-100 micromol) evoked a short-lasting adenosine release immediately following drug injection. Co-administration of either the N-methyl-D-aspartate (NMDA) receptor antagonist, dizocipine maleate (MK-801, 1 nmol) or the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline (CNQX, 10 nmol) with glutamate blocked such release, suggesting an involvement of peripheral ionotropic glutamate receptors in this response. Systemic pre-treatment with capsaicin, a neurotoxin selective for unmyelinated sensory afferents, significantly reduced glutamate-evoked peripheral adenosine release, but release was not affected by systemic pre-treatment with 6-hydroxydopamine, a neurotoxin selective for sympathetic nerve efferents. Neither MK-801 nor CNQX blocked 5% formalin-evoked adenosine release, suggesting adenosine release by formalin is not secondary to ionotropic glutamate receptor activation. We conclude that administration of glutamate evokes peripheral adenosine release, and that peripheral ionotropic glutamate receptors on unmyelinated sensory afferents are involved in such release. The released adenosine may provide a negative feedback control on nociception.  相似文献   

16.
Chiral pyrazoline amino acids (3aR,4S,6aR)-1a and (3aR,4S,6aR)-1b, and (3aS,6S,6aS)-2a and (3aS,6S,6aS)-2b, which are conformationally constrained analogues of glutamic and homoglutamic acid, respectively, were prepared via a strategy based on the 1,3-dipolar cycloaddition of a nitrile imine to methyl N-Boc-3,4-didehydro-(S)-prolinate. The new 'amino acids' were tested for activity at ionotropic glutamate receptors. Solely the derivative (3aR,4S,6aR)-1a, which is structurally related to the previously described 4,5-dihydroisoxazole analogue (S)-CIP-A, turned out to be a potent and selective agonist for the AMPA receptors. The biological activity is due to the interaction with the orthosteric glutamate binding site.  相似文献   

17.
N1-substituted bicyclic pyrazole amino acids (S)-9a-9c and (R)-9a-9c, which are conformationally constrained analogues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested for activity at ionotropic and metabotropic glutamate receptors. Some of them turned out to be selective for the NMDA receptors, where they behaved as weak antagonists. The biological activity is mainly due to the interaction with the glutamate binding site, and not with the glycine co-agonist site.  相似文献   

18.
A series of novel imidazo[4,5-d]azepine compounds derived from marine natural product ceratamine A were designed and synthesized in 7 steps. Most compounds exhibited comparable cytotoxicity against five human cancer cell lines (HCT-116, HepG2, BGC-823, A549 and A2780) to natural product ceratamine A. Compound 1k, bearing methoxy group at C-14, C-15 and C-16, showed the best in vitro cytotoxicity, which was better than ceratamine A. The structure and activity relationships study showed that the benzyloxymethyl group on N-3 played an important role on the cytotoxicity.  相似文献   

19.
Glutamate when microinjected at the medial preoptic area (mPOA) influences brain temperature (Tbr) and body temperature (Tb) in rats. Glutamate and its various receptors are present at the mPOA. The aim of this study was to identify the contribution of each of the ionotropic glutamatergic receptors at the mPOA on changes in Tbr and Tb in freely moving rats. Adult male Wistar rats (n=40) were implanted with bilateral guide cannula with indwelling styli above the mPOA. A telemetric transmitter was implanted at the peritoneum to record Tb and locomotor activity (LMA). A precalibrated thermocouple wire implanted near the hypothalamus was used to assess Tbr. Specific agonist for each ionotropic glutamate receptor was microinjected into the mPOA and its effects on temperature and LMA were measured in the rats. The rats were also microinjected with the respective ionotropic receptor antagonists, 15 min prior to the microinjection of each agonist. Amongst amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-d-aspartate (NMDA) and kainic acid, AMPA increased Tb and LMA when injected at the mPOA. Specific antagonists for AMPA receptors was able to attenuate this increase (p<0.005). Pharmacological blockade of NMDA was able to lower Tbr only. Microinjection of kainic acid and its antagonist had no effect on the variables. The finding of the study suggests that activation of the AMPA receptors at the mPOA, leads to the rise in body temperature.  相似文献   

20.
Ionotropic receptors (IRs) mainly detect the acids and amines having great importance in many insect species, representing an ancient olfactory receptor family in insects. In the present work, we performed RNAseq of Microplitis mediator antennae and identified seventeen IRs. Full-length MmedIRs were cloned and sequenced. Phylogenetic analysis of the Hymenoptera IRs revealed that ten MmedIR genes encoded “antennal IRs” and seven encoded “divergent IRs”. Among the IR25a orthologous groups, two genes, MmedIR25a.1 and MmedIR25a.2, were found in M. mediator. Gene structure analysis of MmedIR25a revealed a tandem duplication of IR25a in M. mediator. The tissue distribution and development specific expression of the MmedIR genes suggested that these genes showed a broad expression profile. Quantitative gene expression analysis showed that most of the genes are highly enriched in adult antennae, indicating the candidate chemosensory function of this family in parasitic wasps. Using immunocytochemistry, we confirmed that one co-receptor, MmedIR8a, was expressed in the olfactory sensory neurons. Our data will supply fundamental information for functional analysis of the IRs in parasitoid wasp chemoreception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号