首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Follicle-stimulating hormone receptor (FSHR), a G-protein coupled receptor, is an important drug target in the development of novel therapeutics for reproductive indications. The FSHR extracellular domains were observed in the crystal structure as a trimer, which enabled us to propose a novel model for the receptor activation mechanism. The model predicts that FSHR binds Asnα52-deglycosylated FSH at a 3-fold higher capacity than fully glycosylated FSH. It also predicts that, upon dissociation of the FSHR trimer into monomers, the binding of glycosylated FSH, but not deglycosylated FSH, would increase 3-fold, and that the dissociated monomers would in turn enhance FSHR binding and signaling activities by 3-fold. This study presents evidence confirming these predictions and provides crystallographic and mutagenesis data supporting the proposed model. The model also provides a mechanistic explanation to the agonist and antagonist activities of thyroid-stimulating hormone receptor autoantibodies. We conclude that FSHR exists as a functional trimer.  相似文献   

2.
Multiple interactions exist between human follicle-stimulating hormone (FSH) and the N-terminal hormone-binding fragment of the human FSH receptor (FSHR) extracellular domain (ECD). Binding of the other human glycoprotein hormones to their cognate human receptors (luteinizing hormone receptor (LHR) and thyroid-stimulating hormone receptor (TSHR)) was expected to be similar. This study focuses on amino acid residues in β-strands 2 (Lys74), 4 (Tyr124, Asn129, and Thr130), and 5 (Asp150 and Asp153) of the FSHR ECD identified in the human FSH·FSHR ECD crystal structure as contact sites with the common glycoprotein hormone α-subunit, and on noncontact residues in β-strands 2 (Ser78) and 8 (Asp224 and Ser226) as controls. These nine residues are either invariant or highly conserved in LHR and TSHR. Mutagenesis and functional characterization of these residues in all three human receptors allowed an assessment of their contribution to binding and receptor activation. Surprisingly, the six reported α-subunit contact residues of the FSHR ECD could be replaced without significant loss of FSH binding, while cAMP signaling potency was diminished significantly with several replacements. Comparative studies of the homologous residues in LHR and TSHR revealed both similarities and differences. The results for FSH/FSHR were analyzed on the basis of the crystal structure of the FSH·FSHR ECD complex, and comparative modeling was used to generate structures for domains, proteins, and complexes for which no structures were available. Although structural information of hormone-receptor interaction allowed the identification of hormone-receptor contact sites, functional analysis of each contact site was necessary to assess its contribution to hormone binding and receptor activation.  相似文献   

3.
Follicle stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHCGR) were demonstrated to impact upon survival of patients suffering from epithelial ovarian cancer (EOC). Though structure wise the G-protein coupled estrogen receptor (GPER/GPR30) is related to FSHR/LHCGR, its prognostic impact in EOC remains controversial. We recently found that FSHR negative patients represent a specific EOC subgroup that may behave differently in respect to both treatment response and prognosis. Hence, the current study aimed to analyze how GPER may interact with the FSHR/LHCGR system in EOC and whether the prognostic significance of GPER in EOC cases (n = 151) may be dependent on the FSHR/LHCGR immunophenotype of the tumor. Ovarian cancer cell lines were used to study how FSH and LH regulate GPER and whether GPER activation differentially affects in vitro cell proliferation in presence/absence of activated FSHR/LHCGR. In EOC tissue, GPER correlated with FSHR/LHCGR and was related to prolonged overall survival only in FSHR/LHCGR negative patients. Although GPER was found to be specifically induced by LH/FSH, GPER agonists (4-Hydroxy-Tamoxifen, G1) reduced EOC cell proliferation only in case of LH/FSH unstimulated pathways. To the same direction, only patients characterized as LHCGR/FSHR negative seem to gain from GPER in terms of survival. Our combined tissue and in vitro results support thus the hypothesis that GPER activation could be of therapeutic benefit in LHCGR/FSHR negative EOC patients. Further studies are needed to evaluate the impact of GPER activation on a clinical scheme.  相似文献   

4.
The follicle-stimulating hormone is critical to reproductive success and is an important target for development of novel reproductive therapies. We have recently reported the development of thiazolidinone positive allosteric modulators of the follicle-stimulating hormone receptor. Here, we demonstrate that discrete modifications in the chemical structure of the thiazolidinone agonists produced compounds with different pharmacological properties. Positive allosteric modulators activated adenylate cyclase signaling (Gs). Using an ADP-ribosylation assay we found that both differing glycosylated variants of human FSH (hFSH) and selected thiazolidinone allosteric modulators of the FSHR induce activation of the Gi signaling pathway. Additionally, we observed that some analogs of this class could activate both pathways. These data suggest that the pharmacological activity of thiazolidinone modulators to the FSHR may be due to the ability of these compounds to induce association of the FSHR with either Gs or Gi signaling pathways in an analog-specific manner.  相似文献   

5.
6.
The gonadotropin known as follicle-stimulating hormone (FSH) plays a key role in regulating reproductive processes. Physiologically active FSH is a glycoprotein that can accommodate glycans on up to four asparagine residues, including two sites in the FSHα subunit that are critical for biochemical function, plus two sites in the β subunit, whose differential glycosylation states appear to correspond to physiologically distinct functions. Some degree of FSHβ hypo-glycosylation seems to confer advantages toward reproductive fertility of child-bearing females. In order to identify possible mechanistic underpinnings for this physiological difference we have pursued computationally intensive molecular dynamics simulations on complexes between the high affinity site of the gonadal FSH receptor (FSHR) and several FSH glycoforms including fully-glycosylated (FSH24), hypo-glycosylated (e.g., FSH15), and completely deglycosylated FSH (dgFSH). These simulations suggest that deviations in FSH/FSHR binding profile as a function of glycosylation state are modest when FSH is adorned with only small glycans, such as single N-acetylglucosamine residues. However, substantial qualitative differences emerge between FSH15 and FSH24 when FSH is decorated with a much larger, tetra-antennary glycan. Specifically, the FSHR complex with hypo-glycosylated FSH15 is observed to undergo a significant conformational shift after 5–10 ns of simulation, indicating that FSH15 has greater conformational flexibility than FSH24 which may explain the more favorable FSH15 kinetic profile. FSH15 also exhibits a stronger binding free energy, due in large part to formation of closer and more persistent salt-bridges with FSHR.  相似文献   

7.
In ovarian granulosa cells, follicle-stimulating hormone (FSH) regulates the proliferation and differentiation events required for follicular growth and oocyte maturation. FSH actions are mediated exclusively through the FSH receptor (FSHR). In cattle, the FSHR gene expression pattern during folliculogenesis and the implications of this receptor in reproductive disorders have been extensively studied. However, the limited availability of specific antibodies against bovine FSHR has restricted FSHR protein analysis. In the present study, we developed an anti-FSHR polyclonal serum by using a 14-kDa peptide conjugated to maltose binding protein. The antiserum obtained was characterized by western blot of protein extracts from bovine follicles, BGC-1 cells and primary cultures of granulosa cells stimulated with testosterone. Also, the blocking effect of serum on estradiol secretion and cell viability after gonadotropin stimulus was characterized in a functional in vitro assay. A 76-kDa protein, consistent with the predicted molecular size of full-length FSHR, was detected in ovarian tissue. Besides, two immunoreactive bands of 60-kDa and 30-kDa (only in cultured cells) were detected. These bands would be related to some of the isoforms of the receptor. Therefore, immunohistochemical assays allowed detecting FSHR in the cytoplasm of granulosa cells and an increase in its expression as follicles progressed from primordial to large preantral follicles. These results suggest that the anti-FSHR serum here developed has good reactivity and specificity against the native FSHR. Therefore, this antiserum may serve as a valuable tool for future studies of the biological function of FSHR in physiological conditions as well as of the molecular mechanism and functional involvement of FSHR in reproductive disorders.  相似文献   

8.
9.
Follicle-stimulating hormone-follicle-stimulating hormone receptor (FSH-FSHR) interaction is one of the most thoroughly studied signaling pathways primarily because of being implicated in sexual reproduction in mammals by way of maintaining gonadal function and sexual fertility. Despite material advances in understanding the role of point mutations, their mechanistic basis in FSH-FSHR signaling is still confined to mystically altered behavior of sTYS335 (sulfated tyrosine) yet lacking a substantial theory. To understand the structural basis of receptor modulation, we choose two behaviorally contradicting mutations, namely S128Y (activating) and D224Y (inactivating), found in FSH receptor responsible for ovarian hyperstimulation syndrome and ovarian dysgenesis, respectively. Using short-term molecular dynamics simulations, the atomic scale investigations reveal that the binding pattern of sTYS with FSH and movement of the thumb region of FSHR show distinct contrasting patterns in the two mutants, which supposedly could be a critical factor for differential FSHR behavior in activating and inactivating mutations.  相似文献   

10.
Ghosalkar JD  Mahale SD 《Peptides》2006,27(11):2894-2900
The extracellular domain (ECD) of the follicle stimulating hormone receptor (FSHR) has been shown to be a major determinant of hormone selectivity. The N-terminal 9-30 region, the sequence of which is unique to FSHR, has been extensively studied earlier and has been proposed to be an FSHR neutralizing epitope. In this study antipeptide antibodies specific to the peptide 9-30 were generated and used for identifying a specific immunodominant region within it. Overlapping peptides corresponding to the regions 9-19, 15-25 and 20-30 were synthesized. The ability of the antipeptide antibodies to 9-30 of FSHR to bind to different peptides was checked. The results indicated that the antibodies mainly recognized the peptide 20-30 and not the other two overlapping peptides. Further, the effect of the peptide 20-30 on the binding of radiolabeled FSH to its receptor was monitored. This peptide showed FSH-binding inhibitory activity with an IC(50) value of 0.598 x 10(-4)M and was more effective than the peptide 9-30 itself. Binding kinetics revealed that the observed effect of the peptide 20-30 is due to mixed type of inhibitory mechanism. This is the smallest peptide from the rat FSHR sequence having ability to inhibit FSH binding to its receptor by more than 90%.  相似文献   

11.
FSH mediates its testicular actions via a specific Sertoli cell G protein-coupled receptor. We created a novel transgenic model to investigate a mutant human FSH receptor (FSHR(+)) containing a single amino acid substitution (Asp567Gly) equivalent to activating mutations in related glycoprotein hormone receptors. To examine the ligand-independent gonadal actions of FSHR(+), the rat androgen-binding protein gene promoter was used to direct FSHR(+) transgene expression to Sertoli cells of gonadotropin-deficient hypogonadal (hpg) mice. Both normal and hpg mouse testes expressed FSHR(+) mRNA. Testis weights of transgenic FSHR(+) hpg mice were increased approximately 2-fold relative to hpg controls (P < 0.02) and contained mature Sertoli cells and postmeiotic germ cells absent in controls, revealing FSHR(+)-initiated autonomous FSH-like testicular activity. Isolated transgenic Sertoli cells had significantly higher basal ( approximately 2-fold) and FSH-stimulated ( approximately 50%) cAMP levels compared with controls, demonstrating constitutive signaling and cell-surface expression of FSHR(+), respectively. Transgenic FSHR(+) also elevated testosterone production in hpg testes, in the absence of circulating LH (or FSH), and it was not expressed functionally on steroidogenic cells, suggesting a paracrine effect mediated by Sertoli cells. The FSHR(+) response was additive with a maximal testosterone dose on hpg testicular development, demonstrating FSHR(+) activity independent of androgen-specific actions. The FSHR(+) response was male specific as ovarian expression of FSHR(+) had no effect on hpg ovary size. These findings reveal transgenic FSHR(+) stimulated a constitutive FSH-like Sertoli cell response in gonadotropin-deficient testes, and pathways that induced LH-independent testicular steroidogenesis. This novel transgenic paradigm provides a unique approach to investigate the in vivo actions of mutated activating gonadotropin receptors.  相似文献   

12.
Owing to the critical role of follicle stimulating hormone receptor (FSHR) signaling in human reproduction, FSHR has been widely explored for development of fertility regulators. Using high-throughput screening approaches, several low molecular weight (LMW) compounds that can modulate FSHR activity have been identified. However, the information about the binding sites of these molecules on FSHR is not known. In the present study, we extracted the structural and functional information of 161 experimentally validated LMW FSHR modulators available in PubMed records. The potential FSHR binding sites for these modulators were identified through molecular docking experiments. The binding sites were further mapped to the agonist or antagonist activity reported for these molecules in literature. MD simulations were performed to evaluate the effect of ligand binding on conformational changes in the receptor, specifically the transmembrane domain. A peptidomimetic library was screened using these binding sites. Six peptidomimetics that interacted with the residues of transmembrane domain and extracellular loops were evaluated for binding activity using in vitro cAMP assay. Two of the six peptidomimetics exhibited positive allosteric modulatory activity and four peptidomimetics exhibited negative allosteric modulatory activity. All six peptidomimetics interacted with Asp521 of hFSHR(TMD). Several of the experimentally known LMW FSHR modulators also participated in H-bond interactions with Asp521, suggesting its important role in FSHR modulatory activity.  相似文献   

13.
Starting from Fendiline and R-568, we identified a novel series of urea compounds as positive allosteric modulators of the calcium sensing receptor (CaSR), as part of a program to identify novel therapeutics for secondary hyperparathyroidism. Initially identified disubstituted ureas were converted to trisubstituted urea lead 20e, which was further modified to increase in vivo potency. Replacing a carbomethoxy substituent by various bioisosteres led to compound 46 which exhibited potent in vitro and in vivo activity after oral administration.  相似文献   

14.
Follicle stimulating hormone (FSH) is a glycoprotein hormone required for female and male gametogenesis in vertebrates. Common marmoset (Callithrix jacchus) is a New World primate monkey, used as animal model in biomedical research. Observations like, requirement of extremely high dose of human FSH in marmosets for superovulation compared to other primates and generation of antibodies in marmoset against human FSH after repeated superovulation cycles, point towards the possibility that FSH–FSH receptor (FSHR) interaction in marmosets might be different than in the humans. In this study we attempted to understand some of these structural differences using FSH peptides and anti‐peptide antibody approach. Based on sequence alignment, in silico modeling and docking studies, L2 loop of FSH β‐subunit (L2β) was found to be different between marmoset and human. Hence, peptides corresponding to region 32–50 of marmoset and human L2β loop were synthesized, purified and characterized. The peptides displayed dissimilarity in terms of molecular mass, predicted isoelectric point, predicted charge and in the ability to inhibit hormone–receptor interaction. Polyclonal antibodies generated against both the peptides were found to exhibit specific binding for the corresponding peptide and parent FSH in ELISA and Western blotting respectively and exhibited negligible reactivity to cross‐species peptide and FSH in ELISA. The anti‐peptide antibody against marmoset FSH was also able to detect native FSH in marmoset plasma samples and pituitary sections. In summary, the L2β loop of marmoset and human FSH has distinct receptor interaction ability and immunoreactivity indicating possibility of subtle conformational and biochemical differences between the two regions which may affect the FSH–FSHR interaction in these two primates. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
16.
Recent studies suggest that bone marrow stem cells (BMSCs) are promising grafts to treat a variety of diseases, including reproductive dysfunction. Primary ovarian failure is characterized by amenorrhea and infertility in a normal karyotype female, with an elevated serum level of follicle-stimulating hormone (FSH) and a decrease level of estrogen caused by a mutation in FSH receptor (FSHR) gene. Currently, there is no effective treatment for this condition. The phenotype of FSHR (-/-) mouse, FORKO (follitropin receptor knockout), is a suitable model to study ovarian failure in humans. Female FORKO mice have elevated FSH, decreased estrogen levels, are sterile because of the absence of folliculogenesis, and display thin uteri and small nonfunctional ovaries. In this study, we determined the effects of BMSC transplantation on reproductive physiology in this animal model. Twenty four hours post BMSC transplantation, treated animals showed detectable estroidogeneic changes in daily vaginal smear. Significant increase in total body weight and reproductive organs was observed in treated animals. Hemotoxylin and eosin (H&E) evaluation of the ovaries demonstrated significant increase in both the maturation and the total number of the follicles in treated animals. The FSH dropped to 40-50% and estrogen increased 4-5.5 times in the serum of treated animals compared to controls. The FSHR mRNA was detected in the ovaries of treated animals. Our results show that intravenously injected BMSCs were able to reach the ovaries of FORKO mice, differentiate and express FHSR gene, make FSHR responsive to FSH, resume estrogen hormone production, and restore folliculogenesis.  相似文献   

17.
目的:探讨蒙药乌力吉-18对大鼠下丘脑-垂体-卵巢轴相关激素及受体的影响。方法:选取40只健康雌性未孕SD大鼠,随机分为空白组、对照组、乌力吉-18高、低2个剂量组,每组10只。空白组灌胃等体积蒸馏水,对照组灌胃逍遥丸,高、低剂量组分别灌胃2.0 g·kg-1·d-1、1.0 g·kg-1·d-1乌力吉-18,连续给药31学艺术d。采用酶联免疫吸附法测定血清促性腺激素释放激素(GnRH)、促卵泡生成素(FSH)、黄体生成素(LH)、雌二醇(E2)及孕酮(PROG)的含量;免疫组化法检测下丘脑组织促性腺激素释放激素(GnRH)、垂体组织促性腺激素释放激素受体(GnRHR)的表达;以蛋白免疫印迹技术检测卵巢组织促卵泡生成素受体(FSHR)、黄体生成素受体(LHR)蛋白表达量。以实时荧光定量PCR检测卵巢组织中FSHR、LHR基因表达量。结果:与空白组比较,乌力吉-18低剂量组可明显升高血清LH含量(P<0.05),上调下丘脑组织GnRH、垂体组织GnRHR表达及卵巢组织FSHR、LHR蛋白表达(P<0.05);乌力吉-18高剂量组可显著升高血清FSH、LH、E2含量(P<0.05),上调下丘脑组织GnRH表达及卵巢组织FSHR表达量(P<0.05),并可显著升高卵巢组织中FSHR、LHR基因表达量(P<0.05);对照组可明显升高血清E2含量(P<0.05)。结论:蒙药乌力吉-18可明显升高血清FSH、LH及E2的含量,促进下丘脑组织GnRH、垂体组织GnRHR及卵巢组织中FSHR、LHR的表达,表明乌力吉-18能够对下丘脑-垂体-卵巢轴相关激素及受体表达产生影响。  相似文献   

18.
Interaction between neurotrophin 4 and gonadotrophin in bovine oviducts   总被引:1,自引:0,他引:1  
Sun Y  Zhang J  Li C  Wang D  Ma Y  Sun Y  Liu Z  Wang C  Zhou X 《Theriogenology》2012,78(1):39-48
  相似文献   

19.
20.
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) have a central role in follicle growth and maturation, but no clear differences between breeds with different ovulation rates have been found. Therefore, this study investigated mRNA expression of FSHβ, LHβ, FSH receptor (FSHR), LH receptor (LHR), and estrogen receptor-β (ERβ) genes in prolific Lezhi black (LB) goats and nonprolific Tibetan (TB) goats by real-time PCR. Follicles and pituitaries were recovered from goats at 12–24 h after onset of estrus. Real-time PCR analysis revealed that the expression levels of FSHβ and LHβ mRNA were significantly higher (p < 0.01) in pituitary of LB than in TB does, but the expression levels of FSHR and LHR mRNA in follicle of TB were greater (p < 0.05). Expression level of follicular ERβ was not different between the two breeds. Data provide evidence that the greater ovulation rate in the LB goat as compared to the TB breed is associated with a greater gonadotropin expression during follicular phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号