首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 3′-peptidyl-tRNA conjugates that possess a hydrolysis-resistant ribose-3′-amide linkage instead of the natural ester linkage would represent valuable substrates for ribosomal studies. Up to date, access to these derivatives is severely limited. Here, we present a novel approach for the reliable synthesis of non-hydrolyzable 3′-peptidyl-tRNAs that contain all the respective genuine nucleoside modifications. In short, the approach is based on tRNAs from natural sources that are site-specifically cleaved within the TΨC loop by using DNA enzymes to obtain defined tRNA 5′-fragments carrying the modifications. After dephosphorylation of the 2′,3′-cyclophosphate moieties from these fragments, they are ligated to the respective 3′-peptidylamino-tRNA termini that were prepared following the lines of a recently reported solid-phase synthesis. By this novel concept, non-hydrolyzable 3′-peptidyl-tRNA conjugates possessing all natural nucleoside modifications are accessible in highly efficient manner.  相似文献   

2.
3.
Abstract

Bromination of the title compound 1 with bromine in phosphate buffer has led to 8-bromo-N6, N6-dimethyl-2′,3′-0-isopropylidene-adenosine (2) and 2′,3′-0-isopropylidene-N6-methyladenosine (3). Under similar conditions, compound 2 gave 8-bromo-2′,3′-0-isopropylidene-N6-methyladenosine (4). The transformations 1 → 3 and 2 → 4 represent biomimetic models of in vivo N6-demethylation of antibiotic puromycin.  相似文献   

4.
Abstract

3′-Thio-3′-deoxyribonucleosides (U and C) have been synthesized via Vorbruggen-type glycosylation with 3-S-benzoyl-5-O-toluoyl-1,2-O-diacetylfuranose, which was obtained from 1,2-O-isopropylidene-5-O-toluoyl-3-O-trifluoromethanesulfonyl-α-D-xylofuranose. 3′-Thio-3′-deoxyuridine has been converted to its phosphoramidite.  相似文献   

5.
Abstract

The facile synthesis of several substituted carbohydrates that are amenable for the preparation of 2′,3′-dideoxy-3′-hydroxymethyl nucleosides are reported. Elaboration of a previously reported analog, 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-1,2-O-isopropylidene-β-D- ribofuranose (4) has provided two 2,3-dideoxy-3-branched ribose derivatives 5-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-1-O-methyl-β-D-ribofuranose (7) and 1.5-di-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-(α,β)-D-ribofuranose (10). Due to problems involved with the separation of anomeric mixtures when these carbohydrates were condensed with an heterocycle, another versatile synthon 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-2-O-t-butyldimethylslyl-1-O- methyl-β-D-ribofuranose (12) was synthesized. The utility of this compound (12) is demonstrated in the total synthesis of 1-[3-deoxy-3-hydroxymethyl-β-D-ribofuranosyl]thymine (20).  相似文献   

6.
Abstract

The 5′-O-(4,4′-dimethoxytrityl) and 5′-O-(tert-butyldimethylsilyl) derivatives of 2′-,3′-O-thiocarbonyl-6-azauridine and 2′,3′-O-thiocarbonyl-5-chlorouridine were synthesized from the parent nucleosides by reaction with 4, 4′-dimethoxytrityl chloride and tert-butyldimethylsilyl chloride, respectively, followed by treatment with 1,1′-thiocarbonyldiimidazole. Introduction of a 2′-,3′-double bond into the sugar ring by reaction of the 5′-protected 2′-,3′-O-thionocarbonates with 1, 3-dimethyl-2-phenyl-1, 3, 2-diazaphospholidiine was unsuccessful, but could be accomplished satisfactorily with trimethyl phosphite. Reactions were generally more successful with the 5′-silylated than with the 5′-tritylated nucleosides. Formation of 2′-,3′-O-thiocarbonyl derivatives proceeded in higher yield with 5′-protected 6-azauridines than with the corresponding 5-chlorouridines because of the propensity of the latter to form 2,2′-anhydro derivatives. In the reaction of 5′-O-(tert-butyldimethylsilyl)-2′-,3′-O-thiocarbonyl-6-azauridine with trimethyl phosphite, introduction of the double bond was accompanied by N3-methylation. However this side reaction was not a problem with 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-O-thioarbonyl-5-chlorouridine. Treatment of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-6-azauridine with tetrabutylammonium fluoride followed by hydrogenation afforded 2′-,3′-dideoxy-6-azauridine. Deprotection of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-5-chlorouridine yielded 2′-,3′-didehydro-2′-,3′-dide-oxy-5-chlorouridine.  相似文献   

7.
Abstract

Various 6-substituted purine 3′-(2′-) azido-3′, 4′-(2′, 4′-) dideoxy-β-DL-erythro-pentopyranoses (1) (2) have been prepared and compared in terms of a substituent electronegativity parameter. The nucleoside 1a (R=NH2) is a good competitive inhibitor of adenosine deaminase.  相似文献   

8.
An efficient method of reduction of 3-azido-3-deoxythymidine and its 5-protected derivatives to 3-aminothymidine derivatives on a palladium catalyst using ammonium formate as a source of hydrogen was suggested.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 2, 2005, pp. 147–150.Original Russian Text Copyright © 2005 by Seregin, Chudinov, Yurkevich, Shvets.  相似文献   

9.
Abstract

Phosphorylation of 2′-0-acetyl-3′-trifluoroacetamido-3′-deoxy-N2-palmitoylguanosine with N-morpholino-O, O-bis(1-benzotriazolyl)phos-phate gives a 5′-phosphotriester. Removal of the benzotriazolyl group and addition of pyrophosphoric acid gave, after deblocking all protecting groups, GTP(3′NH2).  相似文献   

10.
11.
Abstract

Preparation of 3′-deoxypsicothymidines bearing a tether group at O1′ is described. Selective protection of the primary hydroxy functions of the starting nucleoside is briefly discussed.  相似文献   

12.
Abstract

The target compounds were synthesized via the key intermediate carbohydrate 8, which was synthesized by first selectively protecting the 1′ - and 2′- hydroxyl groups followed by selective tosylation of the 5′ -hydroxyl group to obtain compound 3. The tosyl moiety was then replaced by a benzyl ether to obtain 4. Compound 4 underwent Dess-Martin oxidation to afford the ketone 5. Compound 5 was subjected to Wittig olefination to afford the alkene 6 followed by regioselective hydroboration to obtain 7. Compound 7 was fully acetylated using acetic acid, acetic anhydride and sulfuric acid to obtain the key intermediate 8.  相似文献   

13.
Abstract

A synthetic approach towards 1′-C-branched N, O-nucleosides is reported, based on 1,3-dipolar cycloaddition of ethoxycarbonylnitrone. The asymmetric version of the process exploits the presence of a chiral auxiliary at the carbon atom of nitrone and leads to β-D and β-L nucleosides in good yields.  相似文献   

14.
A series of N1,N3-dialkyl-N1,N3-di(alkylcarbonothioyl) malonohydrazides have been designed and synthesized as anticancer agents by targeting oxidative stress and Hsp70 induction. Structure–activity relationship (SAR) studies lead to the discovery of STA-4783 (elesclomol), a novel small molecule that has been evaluated in a number of clinical trials as an anticancer agent in combination with Taxol.  相似文献   

15.
The platinum(II) complexes of the formula [Pt(DCHEDA)X2], where DCHEDA is N,N′-dicyclohexylethylenediamine and X is CL, Br, I, 0.5C2O42− (oxalate), 0.5C3H2O42− (malonate), 0.5C9H4O62− (4-carboxyphthalate), 0.5S2O32− or 0.5SO42−, have been synthesized and characterized by UVVis, IR, and 1H NMR spectral techniques. All the above complexes are non-electrolytes in DMF/H2O, except the sulphate complex which becomes a 1:1 electrolyte after incubation for 24 h at 28 °C. The halide complexes were also studied by X-ray photoelectron spectroscopy and these data suggest that there is π-bonding from platinum to halide in these complexes. The oxalate, malonate and sulphate bind in their complexes as bidentate ligands to platinum through two oxygen atoms whereas the thiosulphate in its complex binds as a bidentate ligand to platinum through one oxygen atom and one sulphur atom.  相似文献   

16.
An improved method for the synthesis of 3-deoxy-3-carboxymethyl nucleosides was suggested. Oxidation of 5-O-benzoyl-1,2-O-isopropylidene-α-D-xylofuranose resulted in the 3-keto derivative, which was treated with triethylphosphonoacetate in the presence of sodium hydride to obtain the 3-deoxy-3-ethoxycarbonylmethylene derivative. Hydrogenation of the unsaturated compound proceeded strictly stereospecifically and gave the product with the ribo-configuration. Acetolysis of the resulting compound with AcOH-Ac2O-CH3SO3H led to 1,2-di-O-acetyl-5-O-benzoyl-3-deoxy-3-ethoxycarbonylmethyl-D-ribofuranose, whose interaction with persilylated nucleic bases gave 3-deoxy-3-ethoxycarbonylmethylnucleosides in a total yield of 42–49% from the starting compound.  相似文献   

17.
Abstract

A series of 3′-C-cyano-3′-deoxy and 3′-C-cyano-2′,3′-dideoxy-nucleoside analogues of thymidine, uridine, cytidine and adenosine have been prepared. Their antiviral activity was assessed in various assay systems and while none of the compounas proved specifically active against human immunodeficiency virus, some compounds had marked activity against other viruses.  相似文献   

18.
Mature tRNA 3′ ends in the yeast Saccharomyces cerevisiae are generated by two pathways: endonucleolytic and exonucleolytic. Although two exonucleases, Rex1 and Rrp6, have been shown to be responsible for the exonucleolytic trimming, the identity of the endonuclease has been inferred from other systems but not confirmed in vivo. Here, we show that the yeast tRNA 3′ endonuclease tRNase Z, Trz1, is catalyzing endonucleolytic tRNA 3′ processing. The majority of analyzed tRNAs utilize both pathways, with a preference for the endonucleolytic one. However, 3′-end processing of precursors with long 3′ trailers depends to a greater extent on Trz1. In addition to its function in the nucleus, Trz1 processes the 3′ ends of mitochondrial tRNAs, contributing to the general RNA metabolism in this organelle.  相似文献   

19.
Facile synthetic methods of 2′,5′-dideoxy-, 2′,3′-dideoxy- and 3′-deoxy-1,N 6-ethenoadenosine nucleosides by either an enzymatic dideoxyribosyl transfer reaction or a simple chemical reaction were proposed. The synthetic products were isolated and purified by preparative HPLC and their structures were confirmed by1H NMR (500 MHz) and FAB-MS including high resolution mass measurement. These modified nucleoside analogs have not been reported yet. Therefore, these modified nucleoside analogs are of potential value to be studied further for biological activity such as anticancer or antiviral.  相似文献   

20.
Abstract

A synthesis of 1-(2,3-dideoxy-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (2′,3′-dideoxyribavirin, ddR) is described. Glycosylation of the sodium salt of 1,2,4-triazole-3-carbonitrile (5) with 1-chloro-2-deoxy-3,5-di-0-p-toluoyl-α-D-erythro-pentofuranose (1) gave exclusively the corresponding N-1 glycosyl derivative with β-anomeric configuration (6), which on ammonolysis provided a convenient synthesis of 2′-deoxyribavirin (7). Similar glycosylation of the sodium salt of methyl 1,2,4-triazole-3-carboxylate (2) with 1 gave a mixture of corresponding N-1 and N-2 glycosyl derivatives (3) and (4), respectively. Ammonolysis of 3 furnished yet another route to 7. A four-step deoxygenation procedure using imidazolylthiocarbonylation of the 3′-hydroxy group of 5′-0-toluoyl derivative (9a) gave ddR (11). The structure of 11 was proven by single crystal X-ray studies. In a preliminary in vitro study ddR was found to be inactive against HIV retrovirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号