首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PI3K pathway has been heavily studied and is one of the most potential targets for various cancer treatment. Herein, we designed and synthesized a series of novel chromeno[4,3-c]pyrazol-4(2H)-one derivates contained piperazine based on our previous research. They were evaluated for their PI3Kα wild-type and H1047R mutant inhibitory activities and anticancer effects in vitro. Most of these compounds displayed the potential antiproliferative activities against four cancer cell lines (HCT-116, A549, Huh7 and HL60). Among them, Compound 4p revealed the remarkable antiproliferative activity and was selected for further biological evaluation. Compound 4p displayed the potent activity against both PI3Kα wild-type and H1047R mutant, and a certain degree of selectivity for PI3Kα over PI3Kβ, γ and δ, and meanwhile it can remarkable down-regulate the phosphorylation of Akt. In addition, compound 4p was found to induce cell apoptosis via upregulation of Bax and cleaved-caspase 3/9, and downregulation of Bcl-2. The above results suggested that compound 4p could be considered as a promising PI3Kα inhibitor.  相似文献   

2.
A series of novel chromeno[4,3-c]pyrazol-4(2H)-one derivates contained sulfonamido were designed and synthesized, and their anticancer effects in vitro was evaluated to develop some new PI3Kα inhibitors. Most of desired compounds exhibited the better antiproliferative activities against four cancer cell lines than that of LY294002. Out of them, compound 4o displayed the potent antiproliferative activity and high selectivity against the PI3Kα protein and it can induce apoptosis of HCT116 in a dose-dependent manner. Western blot assay indicated that compound 4o obviously down-regulated expression of p-Akt (S473). Molecular docking was performed to clarify the possible binding mode between compound 4o and PI3Kα. All these results indicated that compound 4o could be a potential inhibitor of PI3Kα.  相似文献   

3.
Colorectal cancer (CRC) is one of the most frequent, malignant gastrointestinal tumors, and strategies and effectiveness of current therapy are limited. A series of benzimidazole-isoquinolinone derivatives (BIDs) was synthesized and screened to identify novel scaffolds for CRC. Of the compounds evaluated, 7g exhibited the most promising anti-cancer properties. Employing two CRC cell lines, SW620 and HT29, 7g was found to suppress growth and proliferation of the cell lines at a concentration of ~20?µM. Treatment followed an increase in G2/M cell cycle arrest, which was attributed to cyclin B1 and cyclin-dependent kinase 1 (CDK1) signaling deficiencies with simultaneous enhancement in p21 and p53 activity. In addition, mitochondrial-mediated apoptosis was induced in CRC cells. Interestingly, 7g decreased phosphorylated AKT, mTOR and 4E-BP1 levels, while promoting the expression/stability of PTEN. Since PTEN controls input into the PI3K/AKT/mTOR pathway, antiproliferative effects can be attributed to PTEN-mediated tumor suppression. Collectively, these results suggest that BIDs exert antitumor activity in CRC by impairing PI3K/AKT/mTOR signaling. Against a small kinase panel, 7g exhibited low affinity at 5?µM suggesting anticancer properties likely stem through a non-kinase mechanism. Because of the novelty of BIDs, the structure can serve as a lead scaffold to design new CRC therapies.  相似文献   

4.
PI3Kα/mTOR ATP-competitive inhibitors are considered as one of the promising molecularly targeted cancer therapeutics. Based on lead compound A from the literature, two similar series of 2-substituted-4-morpholino-pyrido[3,2-d]pyrimidine and pyrido[2,3-d]pyrimidine analogs were designed and synthesized as PI3Kα/mTOR dual inhibitors. Interestingly, most of the series gave excellent inhibition for both enzymes with IC50 values ranging from single to double digit nM. Unlike many PI3Kα/mTOR dual inhibitors, our compounds displayed selectivity for PI3Kα. Based on its potent enzyme inhibitory activity, selectivity for PI3Kα and good therapeutic index in 2D cell culture viability assays, compound 4h was chosen to be evaluated in 3D culture for its IC50 against MCF7 breast cancer cells as well as for docking studies with both enzymes.  相似文献   

5.
The abnormal activation of PI3K signaling pathway leads to the occurrence of various cancers. The PI3Kα is frequently mutated and overexpressed in many human cancers. Therefore, the PI3Kα was considered as a promising target in therapeutic treatment of cancer. In this study, two series of compounds containing 2H-benzo[b][1,4]oxazin-3(4H)-one and 2H-benzo[b][1,4]oxazine scaffold were synthesized and evaluated antiproliferative activities against three cancer cell lines, including HCT-116, MDA-MB-231 and SNU638. Compound 7f with the most potent antiproliferative activity was selected for further evaluation on normal cells and PI3K kinase. Studies indicated that compound 7f could decrease the phospho-Akt (T308) in a dose-dependent manner. Four key hydrogen bonding interactions were found in the docking of 7f with PI3K enzyme. All the results suggested that 7f was a potent PI3Kα inhibitor.  相似文献   

6.
Four series of novel thieno[3,2-d]pyrimidine and quinazoline derivatives containing N-acylhydrazone or semicarbazone were designed, synthesized, and evaluated for their biological activity. Of which compound 14 showed the most potent antitumor activities with IC50 values of 1.78 μM, 1.02 μM, 1.98 μM, 0.41 μM and 0.22 μM against HT-29, MDA-MB-231, U87MG, PC-3 and HCT-116 cell lines respectively. Inhibition of enzymatic assays showed that PI3Kα was very likely to be one of the drug targets of 14 with the IC50 value of 0.20 μM. According to the results of antitumor activity, the SARs were summarized, which indicated that thieno[3,2-d]pyrimidine and semicarbazone are optimal fragments. In addition, compounds with hydroxyl group at the 4-position on the terminal phenyl ring were more active. Annexin-V and propidium iodide (PI) double staining confirmed that the most active cytotoxic compound 14 can induce cell apoptosis in HCT-116 cells. Moreover, the influence of 14 on the cell cycle distribution was assessed on the HCT-116 cell line, exhibiting a cell cycle arrest at the G2/M phase. Furthermore, molecular docking analysis was also performed to determine possible binding modes between PI3Kα and the target compound. These results will guide us to further refine the structure of the thieno[3,2-d]pyrimidine and quinazoline derivatives to achieve optimal antitumor activity.  相似文献   

7.
A series of novel indole-based oxalamide and aminoacetamide derivatives were designed, synthesized, and evaluated for antiproliferative activities. Preliminary results revealed that compound 8g exhibited significant antiproliferative effect against PC-3, HeLa and HCT-116 cell lines. Flow cytometric analysis of the cell cycle demonstrated the compound 8g induced the cell cycle arrest at G2/M phase in HeLa cell lines. Immunocytochemistry revealed loss of intact microtubule structure in cells treated with 8g and inhibition of tubulin polymerization. Additionally, molecular docking analysis suggested that 8g formed stable interactions in the colchicine-binding site of tubulin. These preliminary results demonstrated that a new class of novel indole-based oxalamide and aminoacetamide derivatives described in the investigation could be developed as potential scaffolds to new anticancer agents.  相似文献   

8.
The green chemoselective synthesis of thiazolo[3,2-a]pyridine derivatives was achieved in water via microwave-assisted three-component reactions of malononitrile, aromatic aldehydes and 2-mercaptoacetic acid with molar ratios of 2:1:1.5 and 2:2.2:1, respectively. These compounds were subject to the experiments of antioxidant activity and cytotoxicity to carcinoma HCT-116 cells and mice lymphocytes. Nearly all of the tested compounds possessed potent capacities for scavenging free radicals. In addition, most of these compounds showed cytotoxicity to HCT-116 cells and mice lymphocytes with no selectivity. Of these, only thiazolo[3,2-a]pyridine derivative 5d suggested selective cytotoxicity to tumor cell line HCT-116 cells.  相似文献   

9.
Phosphatidylinositol 3-kinase (PI3K) signaling pathway has diverse functions, including the regulation of cellular survival, proliferation, cell cycle, migration, angiogenesis and apoptosis. Among class I PI3Ks (PI3Kα, β, γ, δ), the PIK3CA gene encoding PI3K p110α is frequently mutated and overexpressed in a large portion of human cancers. Therefore, the inhibition of PI3Kα has been considered as a promising target for the development of a therapeutic treatment of cancer. In this study, we designed and synthesized a series of 4-aminoquinazoline derivatives and evaluated their antiproliferative activities against six cancer cell lines, including HCT-116, SK-HEP-1, MDA-MB-231, SNU638, A549 and MCF-7. Compound 6b with the most potent antiproliferative activity and without obvious cytotoxicity to human normal cells was selected for further biological evaluation. PI3K kinase assay showed that 6b has selectivity for PI3Kα distinguished from other isoforms. The western blot assay and PI3K kinase assay indicated that 6b effectively inhibited cell proliferation via suppression of PI3Kα kinase activity with an IC50 of 13.6?nM and subsequently blocked PI3K/Akt pathway activation in HCT116 cells. In addition, 6b caused G1 cell cycle arrest owing to the inhibition of PI3K signaling and induced apoptosis via mitochondrial dependent apoptotic pathway. Our findings suggested that 6b has a therapeutic value as an anticancer agent via PI3Kα inhibition.  相似文献   

10.
In our previous study, a series of 6-aryl-3-amino-thieno[2,3-b]pyridine derivatives exhibited potent antiproliferative activities and an unique hepatocellular carcinoma (HCC)-specific anticancer activity was also observed. In further anti-inflammatory research, thienopyridine derivative 1a showed potent inhibition of nitric oxide (NO) production. So a series of thienopyridine analogues of 1a were synthesized and evaluated for anti-inflammatory activities. The structure–activity relationships (SARs) revealed that the most potent analogues 1f and 1o were identified as potent inhibitors of NO production with IC50 values of 3.30 and 3.24 μM, respectively. These results suggest that these 6-aryl-3-amino-thieno[2,3-b]pyridine derivatives might potentially constitute a novel class of anti-inflammatory agents, which require further studies.  相似文献   

11.
Inhibition of the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway by PI3K/mTOR dual inhibitors provides a promising new approach to the treatment of cancers. In this Letter, we identified structurally novel and potent PI3K/mTOR dual inhibitors from a series of 2-amino-4-methylpyrido[2,3-d]pyrimidine derivatives. Their synthesis and structure–activity relationships are reported.  相似文献   

12.
The PI3K/Akt/mTOR signaling pathway plays a key regulatory function in cell survival, proliferation, migration, metabolism and apoptosis. Aberrant activation of the PI3K/Akt/mTOR pathway is found in many types of cancer and thus plays a major role in breast cancer cell proliferation. In our previous studies, benzo[b]furan derivatives were evaluated for their anticancer activity and the lead compounds identified were 26 and 36. These observations prompted us to investigate the molecular mechanism and apoptotic pathway of these lead molecules against breast cancer cells. Benzo[b]furan derivatives (26 and 36) were evaluated for their antiproliferative activity against human breast cancer cell lines MCF-7 and MDA MB-231. These compounds (26 and 36) have shown potent efficiency against breast cancer cells (MCF-7) with IC50 values 0.057 and 0.051 μM respectively. Cell cycle analysis revealed that these compounds induced cell cycle arrest at G2/M phase in MCF-7 cells. Western blot analysis revealed that these compounds inhibit the PI3K/Akt/mTOR signaling pathway and induced mitochondrial mediated apoptosis in human breast cancer cells (MCF-7).  相似文献   

13.
Using pyridino[2,3-D]pyrimidine as the core, total 13 pyridino[2,3-D]pyrimidine derivatives with different alkyl substituents at C2 site have been designed and synthesized to search for novel PI3Kα/mTOR dual inhibitors. Most of the target compounds showed potent mTOR inhibition activity with IC50 values ranging from single to double digit nanomole. Five target compounds exhibited pronounced PI3Kα inhibition activity. In vitro cellular assay indicated that most of the target compounds showed excellent antiproliferative activity, especially 3j whose potency against SKOV3 was 8-fold higher than the positive control AZD8055. In vitro metabolic stability study found that 3j had a comparable stability to that of AZD8055. More importantly, 3j showed better antitumor activity and pharmacokinetic properties in vivo as compared with AZD8055.  相似文献   

14.
A series of N-7-methyl-imidazolopyrimidine inhibitors of the mTOR kinase have been designed and prepared, based on the hypothesis that the N-7-methyl substituent on imidazolopyrimidine would impart selectivity for mTOR over the related PI3Kα and δ kinases. The corresponding N-Me substituted pyrrolo[3,2-d]pyrimidines and pyrazolo[4,3-d]pyrimidines also show potent mTOR inhibition with selectivity toward both PI3α and δ kinases. The most potent compound synthesized is pyrazolo[4,3-d]pyrimidine 21c. Compound 21c shows a Ki of 2 nM against mTOR inhibition, remarkable selectivity (>2900×) over PI3 kinases, and excellent potency in cell-based assays.  相似文献   

15.
We initiated our structure-activity relationship (SAR) studies for novel ACC1 inhibitors from 1a as a lead compound. Our initial SAR studies of 1H-Pyrrolo[3,2-b]pyridine-3-carboxamide scaffold revealed the participation of HBD and HBA for ACC1 inhibitory potency and identified 1-methyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative 1c as a potent ACC1 inhibitor. Although compound 1c had physicochemical and pharmacokinetic (PK) issues, we investigated the 1H-pyrrolo[3,2-b]pyridine core scaffold to address these issues. Accordingly, this led us to discover a novel 1-isopropyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative 1k as a promising ACC1 inhibitor, which showed potent ACC1 inhibition as well as sufficient cellular potency. Since compound 1k displayed favorable bioavailability in mouse cassette dosing PK study, we conducted in vivo Pharmacodynamics (PD) studies of this compound. Oral administration of 1k significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at a dose of 100 mg/kg. Accordingly, our novel series of potent ACC1 inhibitors represent useful orally-available research tools, as well as potential therapeutic agents for cancer and fatty acid related diseases.  相似文献   

16.
Eight novel 4,5-tetrahydropyrazolo[1,5-d][1,4]oxazepine derivatives have been synthesized and purified to be screened for anticancer activity. By a modified TRAP assay, some titled compounds were tested against telomerase, and compound 4a showed the most potent inhibitory activity with IC50 value at 0.78 ± 0.22 μM. Western blot assays showed that compounds 4a and 4b could inhibit expression of Cyclin D1, TERT, phospho-AKT and PI3K/AKT pathway.  相似文献   

17.
In trying to develop new anticancer agents, a series of 1H-pyrazolo[3,4-b]pyridine derivatives was designed and synthesized. Fifteen compounds were evaluated in vitro for their anti-proliferative activity against HePG-2, MCF-7, HCT-116, and PC-3 cell lines. Additionally, DNA binding affinity of the synthesized derivatives was investigated as a potential mechanism for the anticancer activity using DNA/methyl green assay and association constants assay. Compounds 19, 20, 21, 24 and 25 exhibited good activity against the four cancer cells comparable to that of doxorubicin. Interestingly, DNA binding assay results were in agreement with that of the cytotoxicity assays where the most potent anticancer compounds showed good DNA binding affinity comparable to that of doxorubicin and daunorubicin. Furthermore, a molecular docking of the tested compounds was carried out to investigate their binding pattern with the prospective target, DNA (PDB-code: 152d).  相似文献   

18.
A series of lH-pyrazolo[3,4-b]quinolin-3-amine derivatives were synthesized and evaluated for anticancer efficacy in a panel of ten cancer cell lines, including breast (MDAMB-231 and MCF-7), colon (HCT-116, HCT-15, HT-29 and LOVO), prostate (DU-145 and PC3), brain (LN-229), ovarian (A2780), and human embryonic kidney (HEK293) cells, a non-cancerous cell line. Among the eight derivatives screened, compound QTZ05 had the most potent and selective antitumor efficacy in the four colon cancer cell lines, with IC50 values ranging from 2.3 to 10.2?µM. Furthermore, QTZ05 inhibited colony formation in HCT-116 cells in a concentration-dependent manner. Cell cycle analysis data indicated that QTZ05 caused an arrest in the sub G1 cell cycle in HCT-116 cells. QTZ05 induced apoptosis in HCT-116 cells in a concentration-dependent manner that was characterized by chromatin condensation and increase in the fluorescence of fluorochrome-conjugated Annexin V. The findings from our study suggest that QTZ05 may be a valuable prototype for the development of chemotherapeutics targeting apoptotic pathways in colorectal cancer cells.  相似文献   

19.
This study investigated that dieckol (DKL), a natural drug, inhibits colon cancer cell proliferation and migration by inhibiting phosphoinositide-3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) phosphorylation in HCT-116 cells. The cells were treated with DKL in various concentrations (32 and 50 μM) for 24 h and then analyzed for various experiments. MTT (tetrazolium bromide) and crystal violet assay investigated DKL-mediated cytotoxicity. Dichlorodihydrofluorescein diacetate staining was used to assess the reactive oxygen species (ROS) measurement, and apoptotic changes were studied by dual acridine orange and ethidium bromide staining. Protein expression of cell survival, cell cycle, proliferation, and apoptosis protein was evaluated by western blot analysis. Results indicated that DKL produces significant cytotoxicity in HCT-116, and the half-maximal inhibitory concentration was found to be 32 μM for 24-h incubation. Moreover, effective production of ROS and enhanced apoptotic signs were observed upon DKL treatment in HCT-116. DKL induces the expression of phosphorylated PI3K, AKT, and mToR-associated enhanced expression of cyclin-D1, proliferating cell nuclear antigen, cyclin-dependent kinase (CDK)-4, CDK-6, and Bcl-2 in HCT-116. In addition, proapoptotic proteins such as Bax, caspase-9, and caspase-3 were significantly enhanced by DKL treatment in HCT-116. Hence, DKL has been considered a chemotherapeutic drug by impeding the expression of PI3K-, AKT-, and mTOR-mediated inhibition of proliferation and cell cycle-regulating proteins.  相似文献   

20.
The aim of this study was to explore the relationship between the expression of HOXD antisense growth-associated long noncoding RNA (HAGLROS) and prognosis of patients with colorectal cancer (CRC), as well as the roles and regulatory mechanism of HAGLROS in CRC development. The HAGLROS expression in CRC tissues and cells was detected. The correlation between HAGLROS expression and survival time of CRC patients was investigated. Moreover, HAGLROS was overexpressed and suppressed in HCT-116 cells, followed by detection of cell viability, apoptosis, and the expression of apoptosis-related proteins and autophagy markers. Furthermore, the association between HAGLROS and miR-100 and the potential targets of miR-100 were investigated. Besides, the regulatory relationship between HAGLROS and PI3K/AKT/mTOR pathway was elucidated. The results showed that HAGLROS was highly expressed in CRC tissues and cells. Highly expression of HAGLROS correlated with a shorter survival time of CRC patients. Moreover, knockdown of HAGLROS in HCT-116 cells induced apoptosis by increasing the expression of Bax/Bcl-2 ratio, cleaved-caspase-3, and cleaved-caspase-9, and inhibited autophagy by decreasing the expression of LC3II/LC3I and Beclin-1 and increasing P62 expression. Furthermore, HAGLROS negatively regulated the expression of miR-100, and HAGLROS controlled HCT-116 cell apoptosis and autophagy through negatively regulation of miR-100. Autophagy related 5 (ATG5) was verified as a functional target of miR-100 and miR-100 regulated HCT-116 cell apoptosis and autophagy through targeting ATG5. Besides, HAGLROS overexpression activated phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. In conclusion, a highly expression of HAGLROS correlated with shorter survival time of CRC patients. Downregulation of HAGLROS may induce apoptosis and inhibit autophagy in CRC cells by regulation of miR-100/ATG5 axis and PI3K/AKT/mTOR pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号