首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foot-and-mouth disease virus (FMDV) causes a widespread and economically devastating disease of domestic livestock. Although FMDV vaccines are available, political and technical problems associated with their use are driving a renewed search for alternative methods of disease control. The viral RNA genome is translated as a single polypeptide precursor that must be cleaved into functional proteins by virally encoded proteases. 10 of the 13 cleavages are performed by the highly conserved 3C protease (3C(pro)), making the enzyme an attractive target for antiviral drugs. We have developed a soluble, recombinant form of FMDV 3C(pro), determined the crystal structure to 1.9-angstroms resolution, and analyzed the cleavage specificity of the enzyme. The structure indicates that FMDV 3C(pro) adopts a chymotrypsin-like fold and possesses a Cys-His-Asp catalytic triad in a similar conformation to the Ser-His-Asp triad conserved in almost all serine proteases. This observation suggests that the dyad-based mechanisms proposed for this class of cysteine proteases need to be reassessed. Peptide cleavage assays revealed that the recognition sequence spans at least four residues either side of the scissile bond (P4-P4') and that FMDV 3C(pro) discriminates only weakly in favor of P1-Gln over P1-Glu, in contrast to other 3C(pro) enzymes that strongly favor P1-Gln. The relaxed specificity may be due to the unexpected absence in FMDV 3C(pro) of an extended beta-ribbon that folds over the substrate binding cleft in other picornavirus 3C(pro) structures. Collectively, these results establish a valuable framework for the development of FMDV 3C(pro) inhibitors.  相似文献   

2.
The nucleoside analogue ribavirin (R) is mutagenic for foot-and-mouth disease virus (FMDV). Passage of FMDV in the presence of increasing concentrations of R resulted in the selection of FMDV with the amino acid substitution M296I in the viral polymerase (3D). Measurements of progeny production and viral fitness with chimeric viruses in the presence and absence of R documented that the 3D substitution M296I conferred on FMDV a selective replicative advantage in the presence of R but not in the absence of R. In polymerization assays, a purified mutant polymerase with I296 showed a decreased capacity to use ribavirin triphosphate as a substrate in the place of GTP and ATP, compared with the wild-type enzyme. The results suggest that M296I has been selected because it attenuates the mutagenic activity of R with FMDV. Replacement M296I is located within a highly conserved stretch in picornaviral polymerases which includes residues that interact with the template-primer complex and probably also with the incoming nucleotide, according to the three-dimensional structure of FMDV 3D. Given that a 3D substitution, distant from M296I, was associated with resistance to R in poliovirus, the results indicate that picornaviral polymerases include different domains that can alter the interaction of the enzyme with mutagenic nucleoside analogues. Implications for lethal mutagenesis are discussed.  相似文献   

3.
【背景】猪瘟(Classical Swine Fever)是由猪瘟病毒(Classical Swine Fever Virus,CSFV)引起的猪高度接触性传染病,致死率极高。在临床中存在着CSFV与猪其他病原菌共感染的情况,例如CSFV与口蹄疫病毒(Foot-and-Mouth Disease Virus,FMDV)的共感染。【目的】利用CSFV与FMDV共感染猪源宿主细胞,研究CSFV与FMDV共感染对FMDV病毒复制的影响。【方法】构建体外共感染细胞模型,在正常PK-15细胞上进行CSFV共感染FMDV实验,通过观察细胞病变效应(Cytopathic Effect,CPE)、实时荧光定量PCR(RT-qPCR)、Western Blot、间接免疫荧光检测CSFV和FMDV共感染及FMDV单独感染情况下FMDV复制水平的差异。利用RT-qPCR筛选鉴定能够影响FMDV复制的CSFV蛋白。【结果】CSFVC株共感染FMDV能够抑制FMDV的复制,而且灭活的CSFV同样抑制FMDV的复制。通过筛选鉴定出CSFV的C蛋白能够抑制FMDV复制。【结论】研究发现CSFV C株共感染FMDV能够抑制FMDV复制,而其C蛋白具有抑制FMDV复制的能力。  相似文献   

4.
Wang D  Fang L  Li P  Sun L  Fan J  Zhang Q  Luo R  Liu X  Li K  Chen H  Chen Z  Xiao S 《Journal of virology》2011,85(8):3758-3766
The leader proteinase (L(pro)) of foot-and-mouth disease virus (FMDV) is a papain-like proteinase that plays an important role in FMDV pathogenesis. Previously, it has been shown that L(pro) is involved in the inhibition of the type I interferon (IFN) response by FMDV. However, the underlying mechanisms remain unclear. Here we demonstrate that FMDV Lb(pro), a shorter form of L(pro), has deubiquitinating activity. Sequence alignment and structural bioinformatics analyses revealed that the catalytic residues (Cys51 and His148) are highly conserved in FMDV Lb(pro) of all seven serotypes and that the topology of FMDV Lb(pro) is remarkably similar to that of ubiquitin-specific protease 14 (USP14), a cellular deubiquitylation enzyme (DUB), and to that of severe acute respiratory syndrome coronavirus (SARS-CoV) papain-like protease (PLpro), a coronaviral DUB. Both purified Lb(pro) protein and in vivo ectopically expressed Lb(pro) removed ubiquitin (Ub) moieties from cellular substrates, acting on both lysine-48- and lysine-63-linked polyubiquitin chains. Furthermore, Lb(pro) significantly inhibited ubiquitination of retinoic acid-inducible gene I (RIG-I), TANK-binding kinase 1 (TBK1), TNF receptor-associated factor 6 (TRAF6), and TRAF3, key signaling molecules in activation of type I IFN response. Mutations in Lb(pro) that ablate the catalytic activity (C51A or D163N/D164N) or disrupt the SAP (for SAF-A/B, Acinus, and PIAS) domain (I83A/L86A) abrogated the DUB activity of Lb(pro) as well as its ability to block signaling to the IFN-β promoter. Collectively, these results demonstrate that FMDV Lb(pro) possesses DUB activity in addition to serving as a viral proteinase and describe a novel mechanism evolved by FMDV to counteract host innate antiviral responses.  相似文献   

5.
A mutant poliovirus (PV) encoding a change in its polymerase (3Dpol) at a site remote from the catalytic center (G64S) confers reduced sensitivity to ribavirin and forms a restricted quasispecies, because G64S 3Dpol is a high-fidelity enzyme. A foot-and-mouth disease virus (FMDV) mutant that encodes a change in the polymerase catalytic site (M296I) exhibits reduced sensitivity to ribavirin without restricting the viral quasispecies. In order to resolve this apparent paradox, we have established a minimal kinetic mechanism for nucleotide addition by wild-type (WT) FMDV 3Dpol that permits a direct comparison to PV 3Dpol as well as to FMDV 3Dpol derivatives. Rate constants for correct nucleotide addition were on par with those of PV 3Dpol, but apparent binding constants for correct nucleotides were higher than those observed for PV 3Dpol. The A-to-G transition frequency was calculated to be 1/20,000, which is quite similar to that calculated for PV 3Dpol. The analysis of FMDV M296I 3Dpol revealed a decrease in the calculated ribavirin incorporation frequency (1/8,000) relative to that (1/4,000) observed for the WT enzyme. Unexpectedly, the A-to-G transition frequency was higher (1/8,000) than that observed for the WT enzyme. Therefore, FMDV selected a polymerase that increases the frequency of the misincorporation of natural nucleotides while specifically decreasing the frequency of the incorporation of ribavirin nucleotide. These studies provide a mechanistic framework for understanding FMDV 3Dpol structure-function relationships, provide the first direct analysis of the fidelity of FMDV 3Dpol in vitro, identify the β9-α11 loop as a (in)fidelity determinant, and demonstrate that not all ribavirin-resistant mutants will encode high-fidelity polymerases.  相似文献   

6.
旨在建立一种快速、灵敏、特异的检测口蹄疫病毒在复制过程中产生的负链RNA的方法。根据口蹄疫病毒(foot-and-mouth disease virus,FMDV)病毒5’-非编码区(5’-UTR)基因序列,设计了5条引物链特异性RT-PCR引物,建立检测口蹄疫病毒负链RNA的链特异性RT-PCR方法。提取FMD病毒RNA,应用设计的正向引物T1-H1做反转录引物,经反转录和RNA酶A消化后,再经两轮链特异性PCR扩增,可特异性地检测FMDV在复制过程中产生的负链RNA。所建立的检测口蹄疫病毒负链RNA的链特异性RT-PCR方法是一种可靠的方法,在确定细胞培养物和动物感染FMDV的病毒复制和了解病毒的致病性研究中具有应用前景。  相似文献   

7.
The leader protease (Lpro) from foot-and-mouth disease virus (FMDV) has the ability to cleave eIF4G, leading to a blockade of cellular protein synthesis. In contrast to previous reports, our present findings demonstrate that FMDV Lpro is able to increase translation driven by FMDV IRES. Additionally, inactivation of eIF2 subsequent to phosphorylation induced by arsenite or thapsigargin in BHK cells blocks protein synthesis directed by FMDV IRES, whereas in the presence of Lpro, significant translation is found under these conditions. This phenomenon was also observed in cell-free systems after induction of eIF2 phosphorylation by addition of poly(I:C).  相似文献   

8.
为探讨口蹄疫病毒Lpro致MDBK细胞病变效应中的形态学变化,本实验在成功构建可稳定表达口蹄疫病毒Lpro目的基因的MDBK细胞系的基础上,人工诱导Lpro表达后,采用光学显微镜观察、Hoechst33258染色、AO-EB染色、DNALadder等进行检测,研究口蹄疫病毒Lpro致MDBK细胞的病变效应。结果显示,MDBK细胞系在诱导表达口蹄疫病毒Lpro24h后,光学显微镜下细胞形态表现为细胞体积缩小、核浓缩、细胞周围出现透明圈等现象;Hoechst33258染色检测呈现典型的细胞核浓缩和梅花状核碎裂;诱导表达Lpro36h后,AO-EB染色显示早期病变细胞核染亮绿色呈致密斑块或碎片状,晚期病变细胞核染橘黄色呈致密斑块;DNA凝胶电泳显示可见的DNALadder"梯状"条带。证明口蹄疫病毒Lpro在体外可诱导MDBK细胞发生凋亡。  相似文献   

9.
Translation initiation on foot-and-mouth disease virus (FMDV) RNA occurs by a cap-independent mechanism directed by a highly structured element (approximately 435 nt) termed an internal ribosome entry site (IRES). A functional assay to identify proteins that bind to the FMDV IRES and are necessary for FMDV IRES-mediated translation initiation has been developed. In vitro-transcribed polyadenylated RNAs corresponding to the whole or part of the FMDV IRES were immobilized on oligo-dT Dynabeads and used to deplete rabbit reticulocyte lysate (RRL) of IRES-binding proteins. Translation initiation factors eIF4G, eIF4A, and eIF4B bound to the 3' domain of the FMDV IRES. Depletion of eIF4G from RRL by this region of the FMDV IRES correlated with the loss of translational capacity of the RRL for capped, uncapped, and FMDV IRES-dependent mRNAs. However, this depleted RRL still supported hepatitis C virus IRES-directed translation. Poly (rC) binding protein-2 bound to the central domain of the FMDV IRES, but depletion of RRL with this IRES domain had no effect on FMDV IRES-directed translation initiation.  相似文献   

10.
Foot-and-mouth disease is a highly contagious viral disease of cloven-hoofed animals that is caused by foot-and-mouth disease virus (FMDV). To replicate efficiently in vivo, FMDV has evolved methods to circumvent host antiviral defense mechanisms, including those induced by interferons (IFNs). Previous research has focused on the effect of FMDV Lpro and 3Cpro on type I IFNs. In this study, FMDV VP3 was found to inhibit type II IFN signaling pathways. The overexpression of FMDV VP3 inhibited the IFN-γ-triggered phosphorylation of STAT1 at Tyr701 and the subsequent expression of downstream genes. Mechanistically, FMDV VP3 interacted with JAK1/2 and inhibited the tyrosine phosphorylation, dimerization and nuclear accumulation of STAT1. FMDV VP3 also disrupted the assembly of the JAK1 complex and degraded JAK1 but not JAK2 via a lysosomal pathway. Taken together, the results reveal a novel mechanism used by which FMDV VP3 counteracts the type II IFN signaling pathways.  相似文献   

11.
Foot-and-mouth disease virus (FMDV) can use a number of integrins as receptors to initiate infection. Attachment to the integrin is mediated by a highly conserved arginine-glycine-aspartic acid (RGD) tripeptide located on the GH loop of VP1. Other residues of this loop are also conserved and may contribute to integrin binding. In this study we have used a 17-mer peptide, whose sequence corresponds to the GH loop of VP1 of type O FMDV, as a competitor of integrin-mediated virus binding and infection. Alanine substitution through this peptide identified the leucines at the first and fourth positions following RGD (RGD+1 and RGD+4 sites) as key for inhibition of virus binding and infection mediated by alphavbeta6 or alphavbeta8 but not for inhibition of virus binding to alphavbeta3. We also show that FMDV peptides containing either methionine or arginine at the RGD+1 site, which reflects the natural sequence variation seen across the FMDV serotypes, are effective inhibitors for alphavbeta6. In contrast, although RGDM-containing peptides were effective for alphavbeta8, RGDR-containing peptides were not. These observations were confirmed by showing that a virus containing an RGDR motif uses alphavbeta8 less efficiently than alphavbeta6 as a receptor for infection. Finally, evidence is presented that shows alphavbeta3 to be a poor receptor for infection by type O FMDV. Taken together, our data suggest that the integrin binding loop of FMDV has most likely evolved for binding to alphavbeta6 with a higher affinity than to alphavbeta3 and alphavbeta8.  相似文献   

12.
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. It produces severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV). The use of empty capsids as a subunit vaccine has been reported to be a promising candidate because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. In this report, we explored transient gene expression (TGE) in serum-free suspension-growing mammalian cells for the production of FMDV recombinant empty capsids as a subunit vaccine. The recombinant proteins produced, assembled into empty capsids and induced protective immune response against viral challenge in mice. Furthermore, they were recognized by anti-FMDV bovine sera. By using this technology, we were able to achieve expression levels that are compatible with the development of a vaccine. Thus, TGE of mammalian cells is an easy to perform, scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.  相似文献   

13.
Foot-and-mouth disease (FMD) is an acute and highly contagious disease caused by foot-and-mouth disease virus (FMDV) that can affect cloven-hoofed animal species, leading to severe economic losses worldwide. Therefore, the development of a safe and effective new vaccine to prevent and control FMD is both urgent and necessary. In this study, we developed a chimeric virus-like particle (VLP) vaccine candidate for serotype O FMDV and evaluated its protective immunity in guinea pigs. Chimeric VLPs were formed by the antigenic structural protein VP1 from serotype O and segments of the viral capsid proteins (VP2, VP3, and VP4) from serotype A. The chimeric VLPs elicited significant humoral and cellular immune responses with a higher level of anti-FMDV antibodies and cytokines than the control group. Furthermore, four of the five guinea pigs vaccinated with the chimeric VLPs were completely protected against challenge with 100 50% guinea pig infectious doses (GPID50) of the virulent FMDV strain O/MAY98. These data suggest that chimeric VLPs are potential candidates for the development of new vaccines against FMDV.  相似文献   

14.
The 3C protease from foot-and-mouth disease virus (FMDV 3C(pro)) is critical for viral pathogenesis, having vital roles in both the processing of the polyprotein precursor and RNA replication. Although recent structural and functional studies have revealed new insights into the mechanism and function of the enzyme, key questions remain that must be addressed before the potential of FMDV 3C(pro) as an antiviral drug target can be realised.  相似文献   

15.
口蹄疫病毒3C蛋白酶在病毒的致病机理、聚蛋白前体的加工和RNA的复制上起着很重要的作用,是当前抗病毒研究的一个重要靶点.本研究从Asia Ⅰ型FMDV适应细胞毒中提取RNA,用RT-PCR技术扩增3C基因,首先克隆到pGEM-T载体,再亚克隆到杆状病毒转移载体pMelBac B中,构建出重组转移载体pMel-3C.最后将含有目的基因的转移载体与线性化的杆状病毒DNA共转染Sf9细胞,通过噬斑筛选和PCR鉴定,获得了重组杆状病毒.重组病毒经扩增后以10个MOI感染Sf9细胞,接种病毒72 h后收获细胞,样品经SDS-PAGE和Western blot证实3C蛋白获得表达,分子量约23kDa,与预测蛋白大小一致,且能被FMDV感染阳性血清所识别.本研究为空衣壳的体外组装及新型抗病毒药物设计的研究奠定了基础.  相似文献   

16.
17.
The integrin alpha(v)beta3 has been shown to act as the receptor for internalization of foot-and-mouth disease virus (FMDV) (A12), with attachment being through a highly conserved RGD motif located on the G-H loop of viral capsid protein VP1. In addition, however, we have recently shown that efficient infection of culture-grown cells by FMDV (O1BFS) requires binding to cell surface heparan sulfate. In this study, we have used a solid-phase receptor binding assay to characterize the binding by FMDV to purified alpha(v)beta3 in the absence of heparan sulfate and other cell surface components. In this assay, FMDV (O1BFS) successfully replicated authentic ligand binding by cellular alpha(v)beta3 in terms of its high affinity, dependence on divalent cations, and activation by manganese ions. Virus binding to this preparation of alpha(v)beta3 was exquisitely sensitive to competition by short RGD-containing peptides (50% inhibition at < 10(-8) M peptide), and this inhibition was highly sequence specific, with the equivalent RGE peptide being at least 10(4) fold less effective as a competitor. Representative viruses of the other six serotypes of FMDV bound to alpha(v)beta3 in a similar RGD-specific manner, although significant differences in sensitivity to RGD peptides suggest that the affinity of the different FMDV serotypes for alpha(v)beta3 is influenced, in part, by the variable amino acid residues in the VP1 G-H loop on either side of the RGD.  相似文献   

18.
将口蹄疫病毒 (FMDV)结构蛋白基因P1的完整cDNA序列插入原核表达性载体pGEX KG中 ,使P1基因与GST融合 ,获得融合表达质粒pKG P1,转化E .coliBL21 (DE3) ,经IPTG诱导 ,SDS PADE结果表明GST P1融合蛋白获得高效表达 ,Western blot检测证实表达的融合蛋白具有免疫学活性 ,表达产物主要存在于细菌裂解液上清中。进一步采用GST纯化试剂盒纯化P1蛋白并作为诊断抗原 ,建立了P1 ELISA诊断方法 ,与FMD间接血凝 (IHA)检测方法平行检测 86 4份血清样品 ,总的符合率达87%。  相似文献   

19.
This review examines whether exfoliated, virus-infected animal skin cells could be an important source of infectious foot and mouth disease virus (FMDV) aerosols. Infectious material rafting on skin cell aerosols is an established means of transmitting other diseases. The evidence for a similar mechanism for FMDV is: (i) FMDV is trophic for animal skin and FMDV epidermis titres are high, even in macroscopically normal skin; (ii) estimates for FMDV skin cell aerosol emissions appear consistent with measured aerosol emission rates and are orders of magnitude larger than the minimum infectious dose; (iii) the timing of infectious FMDV aerosol emissions is consistent with the timing of high FMDV skin concentrations; (iv) measured FMDV aerosol sizes are consistent with skin cell aerosols; and (v) FMDV stability in natural aerosols is consistent with that expected for skin cell aerosols. While these findings support the hypothesis, this review is insufficient, in and of itself, to prove the hypothesis and specific follow-on experiments are proposed. If this hypothesis is validated, (i) new FMDV detection, management and decontamination approaches could be developed and (ii) the relevance of skin cells to the spread of viral disease may need to be reassessed as skin cells may protect viruses against otherwise adverse environmental conditions.  相似文献   

20.
Foot-and-mouth disease Virus (FMDV) is an economically important, highly contagious picornavirus that affects both wild and domesticated cloven hooved animals. In developing countries, the effective laboratory diagnosis of foot-and-mouth disease (FMD) is often hindered by inadequate sample preservation due to difficulties in the transportation and storage of clinical material. These factors can compromise the ability to detect and characterise FMD virus in countries where the disease is endemic. Furthermore, the high cost of sending infectious virus material and the biosecurity risk it presents emphasises the need for a thermo-stable, non-infectious mode of transporting diagnostic samples. This paper investigates the potential of using FMDV lateral-flow devices (LFDs) for dry transportation of clinical samples for subsequent nucleic acid amplification, sequencing and recovery of infectious virus by electroporation. FMDV positive samples (epithelial suspensions and cell culture isolates) representing four FMDV serotypes were applied to antigen LFDs: after which it was possible to recover viral RNA that could be detected using real-time RT-PCR. Using this nucleic acid, it was also possible to recover VP1 sequences and also successfully utilise protocols for amplification of complete FMD virus genomes. It was not possible to recover infectious FMDV directly from the LFDs, however following electroporation into BHK-21 cells and subsequent cell passage, infectious virus could be recovered. Therefore, these results support the use of the antigen LFD for the dry, non-hazardous transportation of samples from FMD endemic countries to international reference laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号