首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mannitol Metabolism in Celery Stressed by Excess Macronutrients   总被引:6,自引:5,他引:6       下载免费PDF全文
Stoop J  Pharr DM 《Plant physiology》1994,106(2):503-511
The effect of excess macronutrients in the root environment on mannitol and sucrose metabolism was investigated in celery (Apium graveolens L. var dulce [Mill.] Pers.). Plant growth was inhibited progressively as macronutrient concentration in the media, as measured by electrical conductivity (E.C.), increased from 1.0 to 11.9 decisiemens m-1. Plants grown for 35 d at higher E.C. had a lower water content but similar dry weight in their roots, leaves, and petioles compared to plants grown at lower E.C. Macronutrient concentrations of leaves, roots, and petioles were not affected by the imposed stress, indicating that the macronutrient stress resulted in a water-deficit stress response rather than a salt-specific response. Mannitol accumulated in sink tissues and was accompanied by a drastic decrease in activity of mannitol-1-oxidoreductase. Sucrose concentration and activities of sucrose-metabolizing enzymes in sink tissues were not affected by the macronutrient stress. Mature leaves exhibited increased concentrations of both mannitol and sucrose, together with increased activity of mannose-6-phosphate reductase and sucrose phosphate synthase, in response to macronutrient stress. Thus, mannitol accumulation in osmotically stressed celery is regulated by diminished catabolism in sink tissues and increased capacity for mannitol biosynthesis in source leaves.  相似文献   

2.
Wolbachia are maternally inherited bacterial endosymbionts that naturally infect a diverse array of arthropods. They are primarily known for their manipulation of host reproductive biology, and recently, infections with Wolbachia have been proposed as a new strategy for controlling insect vectors and subsequent human-transmissible diseases. Yet, Wolbachia abundance has been shown to vary greatly between individuals and the magnitude of the effects of infection on host life-history traits and protection against infection is correlated to within-host Wolbachia abundance. It is therefore essential to better understand the factors that modulate Wolbachia abundance and effects on host fitness. Nutrition is known to be one of the most important mediators of host–symbiont interactions. Here, we used nutritional geometry to quantify the role of macronutrients on insect–Wolbachia relationships in Drosophila melanogaster. Our results show fundamental interactions between diet composition, host diet selection, Wolbachia abundance and effects on host lifespan and fecundity. The results and methods described here open a new avenue in the study of insect–Wolbachia relationships and are of general interest to numerous research disciplines, ranging from nutrition and life-history theory to public health.  相似文献   

3.
Deficiencies of each macronutrient (N, P, K, Ca. Mg, S, and Fe) decreased the specific activity of nitrate reductase from Triticum aestivum L. seedlings. Nitrate content was decreased by N, P, K, Ca, and Mg deficiencies and unaffected by S and Fe deficiencies. Glutamic acid dehydrogenase activity was decreased by N, P, and S deficiencies, unchanged by K deficiency, and increased by Ca, Mg, and Fe deficiencies. Glutamine synthetase activity closely paralleled nitrate reductase activity and was decreased by deficiencies of N, P, K, Ca, Mg, and S. Glutamic-oxaloacetic transaminase was not sensitive to macronutrient deficiencies. High 14C-leucine incorporation into tissue sections of N-, P-, K-, Ca-, and S-deficient seedlings did not appear indicative of protein synthesis rates in intact seedlings. Nutritional deficiencies apparently depleted endogenous amino acid pools and caused less inhibition of exogenous 14C-leucine incorporation into protein.  相似文献   

4.
We analyzed 144 composite sediment samples to appraise the seasonal variation in select major nutrients in the bed sediments of Keoladeo National Park (KNP), Bharatpur, a subtropical monsoonal wetland system in India, from September 2003 to July 2005. Total organic carbon (TOC, %) and total nitrogen (TN, %) in the sediments were in the range of 0.61–14.01 and 0.26–0.68, respectively. The total available phosphorus (TAP, %) and total available sulphur (TAS, %) ranged from 0.001 to 0.034 and from 0.001 to 0.012, respectively. While C:N ratio was within a narrow range (1.38–13.56), C:P ratios varied widely (18.81–5995.83). Similar wide variations were seen in C:S ratio (352.2–3929.5) as well as N:P ratio (9.34–56.6). All the parameters except TAS showed depth-wise declines along the sediment profile. In contrast, the pH gradually increased along the depth. Most of the parameters significantly varied across months and sediment layers. A positive correlation (Two-tailed, P < 0.05) existed between TOC and all the nutrients and their ratios except TAP and N:P. TAP was positively correlated with electrical conductivity (EC) and water soluble substances (WSS), suggesting the contribution of phosphate to the dissolved salts. During certain months elements such as P were comparatively low in concentration, in spite of input through agricultural runoff and large scale bird droppings, probably due to its higher uptake by macrophytes growing luxuriantly in the wetland. Organic materials appear to decay at a faster rate during the drier periods as indicated by the fall in TOC and the rise in TN. Principal Component Analysis (PCA) shows that three components contributed to 68.9% of the total variance. The first component that accounted for 26.4% of the total variance reflects the importance of total organic carbon in wetland sediments and the ratio of carbon to other nutrients. The second one accounting for 23.7% of the variance correlated with water soluble substances (EC, WSS and TAS). The third component accounting for 18.7% of the variance reflects the influence of two major nutrients, nitrogen and phosphorus, in sediments those affect the biogeochemical processes in wetlands. Thus, the three PCA components can be characterized as ‘sediment organic carbon and its ratios with other elements’, ‘WSS, TAS’ and ‘the limiting nutrients such as N and P’, respectively.  相似文献   

5.
Phenol was investigated for the ability of TiO2 photocatalysis to increase its bioavailability as an electron donor for denitrification. The rate of nitrate removal by denitrification was increased by up to 2.6-fold by exposing phenol to photocatalysis for 30 min, although the rate decreased with increasing photocatalysis. The increased denitrification rate appeared to be associated with the photocatalytic production of carboxylic acids, but the slow down correlated to the production of catechol and hydroquinone.  相似文献   

6.
Enhanced protein renaturation by temperature-responsive polymers   总被引:6,自引:0,他引:6  
The application of temperature-sensitive polymer (PNIPAAm) for the renaturation of beta-lactamase from inclusion bodies was investigated. It was observed that PNIPAAm was more effective than PEG in enhancing protein renaturation. At a concentration of 0.1%, PNIPAAm improved the yield of beta-lactamase activity by 41% from 46. 5 to 65.4 IU/mL, compared to 26% with PEG from 46.5 to 58.7 IU/mL. Kinetic study indicated that PNIPAAm did not significantly affect the initial rate of protein renaturation but did increase final activity yield. In the presence of PEG and PNIPAAm, the activity yields increased with temperature, indicating that hydrophobic interactions between denatured protein and polymer molecules contributed to the enhanced protein renaturation with polymers. The sequential addition approach, aiming at enhancing protein renaturation by reducing local protein concentration during renaturation, was also shown effective in enhancing protein renaturation, especially in the presence of polymers. With the sequential addition approach, the activity yield was increased by 60. 5% from 46.5 to 74.6 IU/mL with PNIPAAm. Similar behavior was also observed with PEG. PNIPAAm exhibited similar behavior as PEG on the renaturation of beta-lactamase in terms of temperature effect and concentration effect, indicating that the mechanism for enhanced protein renaturation for the two polymers might be similar. PNIPAAm exhibits a lower critical solution temperature (LCST) of 32 degrees C and can be effectively separated from aqueous solution and recycled. A protein renaturation process employing PNIPAAm, which offers the advantages of enhanced renaturation efficiency, minimum loss of protein aggregates, and ease of polymers recycling, was proposed.  相似文献   

7.
Leaf protoplasts of lucerne (alfalfa-Medicago sativa L.) and tobacco (Nicotiana tabacum L.) were cultured in standard liquid culture medium and in medium that had been passed through a 10-kDa cut-off ultrafilter. The proportion of lucerne cells that divided was increased by 50–400% in ultrafiltered medium over that in standard medium. The effect was seen in six independent experiments performed over a period of 9 months. The inhibitory effect was detected in each of four separate batches of glucose that were examined from the same manufacturer. Ultrafiltration of medium used to culture tobacco protoplasts gave a 10% increase in the proportion of cells that divided. High molecular weight inhibitors of protoplast division were detected as contaminants in a number of components of the lucerne protoplast culture medium, including glucose, minor sugars and sugar alocohols, coconut water and casein hydrosylate. Gel filtration showed that the major inhibitory contaminant in glucose had a molecular weight greater than 200 000.  相似文献   

8.
Enhanced yeast immobilization by nutrient starvation   总被引:2,自引:0,他引:2  
Saccharomyces uvarum NRRL Y1347 cells were immobilized in a porous support. Cell loadings of up to 600 mg dry cell/g support or 70 mg dry cell/cm3 support were obtained. Starvation in a marine environment increased the adhesion strength of immobilized cells.  相似文献   

9.
10.
Bisulfite sequencing is a valuable tool for mapping the position of 5-methylcytosine in the genome at single base resolution. However, the associated chemical treatment causes strand scission, which depletes the number of sequenceable DNA fragments in a library and thus necessitates PCR amplification. The AT-rich nature of the library generated from bisulfite treatment adversely affects this amplification, resulting in the introduction of major biases that can confound methylation analysis. Here, we report a method that enables more accurate methylation analysis, by rebuilding bisulfite-damaged components of a DNA library. This recovery after bisulfite treatment (ReBuilT) approach enables PCR-free bisulfite sequencing from low nanogram quantities of genomic DNA. We apply the ReBuilT method for the first whole methylome analysis of the highly AT-rich genome of Plasmodium berghei. Side-by-side comparison to a commercial protocol involving amplification demonstrates a substantial improvement in uniformity of coverage and reduction of sequence context bias. Our method will be widely applicable for quantitative methylation analysis, even for technically challenging genomes, and where limited sample DNA is available.  相似文献   

11.
We investigated the restorative effect of orally administered glucosamine hydrochloride (GlcN) on the experimentally produced cartilaginous injuries in rabbits. A total of three holes in the left stifle joint including one in the medial trochlear ridge and two in the trochlear sulcus (proximal and distal) of articular cartilage were made surgically using a drill. For the control group, only tap water and for the glucosamine group, a water based solution of GlcN (1 g/head) was administered daily, respectively. We observed the clinical symptoms daily and the condition of the injured part was observed visually and histologically at 3 weeks after the operation. There was no difference in body weight or general conditions between the two groups. However, in the control group, the muscle weight of the biceps of the left femur was significantly reduced (p<0.05). With respect to the medial trochlear injury, four out of six cases in the control group and five out of six cases in the glucosamine group were cured, respectively. With respect to the proximal and the distal holes in sulcus, only two out of six cases in the control group and five expansive out of six cases in the glucosamine group were cured. There was significant difference between the glucosamine group and the control with respect to healing of the proximal hole (p<0.05) and the total points (p<0.05), indicating that the artificial cartilage injuries were facilitated by GlcN. On histological examination, the injured parts were covered by fibrous connective tissues in the control, whereas in the glucosamine group, the massive proliferation of matured cartilaginous tissues was observed, and the regenerated cartilaginous tissues were surrounded by the proliferation of chondroblast cells. In the regenerated tissue, matured cartilage substrate was about to be formed. Safranin O and alcian blue stains marked significantly dense in the glucosamine group than in the control (p<0.01) in injured parts as well as in non-injured joint cartilage.  相似文献   

12.
Vinblastine sulphate, an antimitotic and anti-inflammatory agent, modifies the thermal behaviour of the model membranes: the dipalmitoylphosphatidylcholine DPPC bilayers. The mixed DPPC and vinblastine sulphate multibilayers in the range of DPPC mole fraction 0.4 to 1 display clearly the gel-liquid crystal (chain melting) transition on the thermograms obtained with a differential scanning microcalorimeter. The molar enthalpy of this transition is slightly depressed by vinblastine sulphate (less than 10%). The temperature-composition phase diagram corresponds to a total insolubility of vinblastine sulphate inside the frozen (gel) bilayers and to a solubility of 0.2 (mole fraction) of vinblastine sulphate inside the fluid (liquid crystalline) bilayers. The dissolved vinblastine sulphate depresses the cooperativity number of the frozen ? fluid transition of the bilayers very strongly (4- to 5-times). Up to its solubility concentration, vinblastine sulphate increases the amount of the structural water of the bilayers and modifies the thermal behaviour of this water. The ‘expelled’ vinblastine sulphate molecules are retained by the polar groups of DPPC molecules and screen their electrostatic interactions with the structural water molecules. Below 0°C, the amount of the structural water, which forms the aqueous separation between two bilayers, is enhanced by vinblastine sulphate. However, the drug reduces (screens) the bilayers interaction with the structural water molecules.  相似文献   

13.
Poor skin permeability and stability limits the application of peptides to the skin. Enhanced skin permeation could offer new therapies for a range of dermatological and cosmetic applications. The aim of this study was to investigate the application of a novel magnetic field enhancement technology to peptide delivery across the skin. Ala-Trp was used as a model dipeptide. Stability of the dipeptide in a range of conditions and with exposure to skin was determined. Dermaportation-magnetic field technology increased the in vitro permeability coefficient of Ala-Trp across human epidermis from 7.7 x 10(-4) cm/h with passive diffusion to 1.94 x 10(-2) cm/h with Dermaportation. Ala-Trp was unstable with exposure to human epidermis. Following permeation across the epidermis, a degradation product was detected in the receptor solution with the amount increasing up to 6 h. Given the susceptibility of peptides to degradation in the skin it is essential that they are delivered rapidly across the skin in order to maximize the opportunity for delivery of the native peptide. Dermaportation offers a potential new delivery method for skin delivery of peptides for a range of dermatological and cosmetic applications.  相似文献   

14.
Hexachlorocyclohexane (HCH) has been banned for use in technologically advanced countries; however, it is still in use in tropical countries like India. Earlier we reported the degradation of HCH isomers by Sphingomonas paucimobilis within 12 days of incubation. Here we report the role of different factors that could enhance the degradation rate of HCH isomers. We found that an increase in the cell number from 102 to 108 cells/ml resulted in an increased degradation rate of HCH isomers viz. α, β, γ, and δ-HCH. While α-HCH and γ-HCH disappeared completely from the medium within 3 days of incubation, a maximum of only 90% and 85% degradation was observed for β and δ-HCH, respectively. We have also observed that adapted cultures degraded HCH isomers more efficiently than did the normal cultures. Received: 16 February 2000 / Accepted: 23 May 2000  相似文献   

15.
Enhanced biomethanation of kitchen waste by different pre-treatments   总被引:3,自引:0,他引:3  
Five different pre-treatments were investigated to enhance the solubilisation and anaerobic biodegradability of kitchen waste (KW) in thermophilic batch and continuous tests. In the batch solubilisation tests, the highest and the lowest solubilisation efficiency were achieved with the thermo-acid and the pressure-depressure pre-treatments, respectively. However, in the batch biodegradability tests, the highest cumulative biogas production was obtained with the pressure-depressure method. In the continuous tests, the best performance in terms of an acceptable biogas production efficiency of 60% and stable in-reactor CODs and VFA concentrations corresponded to the pressure-depressure reactor, followed by freeze-thaw, acid, thermo-acid, thermo and control. The maximum OLR (5 g COD L−1 d−1) applied in the pressure-depressure and freeze-thaw reactors almost doubled the control reactor. From the overall analysis, the freeze-thaw pre-treatment was the most profitable process with a net potential profit of around 11.5 € ton−1 KW.  相似文献   

16.
Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates   总被引:15,自引:0,他引:15  
We have studied the effects of methotrexate (MTX-Glu1) and the polyglutamate derivatives of methotrexate (MTXPGs) with 2, 3, 4, and 5 glutamyl residues on the catalytic activity of thymidylate synthase purified from MCF-7 human breast cancer cells and on the kinetics of the ternary complex formation by 5-fluoro-2'-deoxyuridine 5'-monophosphate, folate cofactor, and thymidylate synthase. MTX-Glu1 exhibited uncompetitive inhibition of thymidylate synthase when reaction kinetics were analyzed by either double reciprocal plots or a computerized mathematical model based on nonlinear least-squares curve fitting. The Ki for MTX-Glu1 inhibition was 13 microM and the I50 was 22 microM, irrespective of the degree of polyglutamation of the folate. In contrast, the polyglutamated derivatives of MTX all acted as noncompetitive inhibitors. The MTXPGs had 75-300-fold greater potency than MTX-Glu1 as inhibitors of thymidylate synthase catalytic activity, with Ki values from 0.17 to 0.047 microM for MTX-Glu2 to MTX-Glu5, respectively. Neither MTX-Glu1 nor MTXPGs promoted the formation of a charcoal-stable ternary complex with thymidylate synthase and 5-fluoro-2'-deoxyuridine 5'-monophosphate. CH2-H4PteGlu5 (where PteGlu represents pteroylglutamic acid) was found to be 40-fold more potent than CH2-H4PteGlu1 in participating in the formation of a ternary complex, and 10 microM MTX-Glu5 significantly inhibited the formation of a ternary complex containing this folate as cofactor. The inhibition was determined to be due to a reduction in the kon. The potency of this inhibition was markedly greater in the presence of CH2-H4PteGlu1 as compared to CH2-H4PteGlu5. This finding suggests that the degree of interference with complex formation in intact cells would depend on the state of polyglutamation of available folate cofactor. Ternary complex formation with H2PteGlu5 as the folate cofactor was also investigated, and a 50% reduction in complex formation was found in the presence of a 2 microM concentration of MTX-Glu5. These findings have significant implications regarding the mechanism of action of MTX-Glu1 and contribute to an understanding of the complex interactions of MTX-Glu1 and 5-fluorouracil.  相似文献   

17.
Bioprocess and Biosystems Engineering - Cellulose is one of the most abundant bio-renewable materials on earth, yet the potential of cellulosic bio-fuels is not fully exploited, primarily due to...  相似文献   

18.
Accumulation of galactose in dairy products due to partial lactose fermentation by lactic acid bacteria yields poor-quality products and precludes their consumption by individuals suffering from galactosemia. This study aimed at extending our knowledge of galactose metabolism in Lactococcus lactis, with the final goal of tailoring strains for enhanced galactose consumption. We used directed genetically engineered strains to examine galactose utilization in strain NZ9000 via the chromosomal Leloir pathway (gal genes) or the plasmid-encoded tagatose 6-phosphate (Tag6P) pathway (lac genes). Galactokinase (GalK), but not galactose permease (GalP), is essential for growth on galactose. This finding led to the discovery of an alternative route, comprising a galactose phosphotransferase system (PTS) and a phosphatase, for galactose dissimilation in NZ9000. Introduction of the Tag6P pathway in a galPMK mutant restored the ability to metabolize galactose but did not sustain growth on this sugar. The latter strain was used to prove that lacFE, encoding the lactose PTS, is necessary for galactose metabolism, thus implicating this transporter in galactose uptake. Both PTS transporters have a low affinity for galactose, while GalP displays a high affinity for the sugar. Furthermore, the GalP/Leloir route supported the highest galactose consumption rate. To further increase this rate, we overexpressed galPMKT, but this led to a substantial accumulation of α-galactose 1-phosphate and α-glucose 1-phosphate, pointing to a bottleneck at the level of α-phosphoglucomutase. Overexpression of a gene encoding α-phosphoglucomutase alone or in combination with gal genes yielded strains with galactose consumption rates enhanced up to 50% relative to that of NZ9000. Approaches to further improve galactose metabolism are discussed.Lactococcus lactis is a lactic acid bacterium widely used in the dairy industry for the production of fermented milk products. Because of its economic importance, L. lactis has been studied extensively in the last 40 years. A small genome, a large set of genetic tools, a wealth of physiological knowledge, and a relatively simple metabolic potential render L. lactis an attractive model with which to implement metabolic engineering strategies (reviewed in references 21 and 57).In the process of milk fermentation by L. lactis, lactose is taken up and concomitantly phosphorylated at the galactose moiety (C-6) by the lactose-specific phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTSLac), after which it is hydrolyzed to glucose and galactose 6-phosphate (Gal6P) (64). The glucose moiety enters the glycolytic pathway upon phosphorylation via glucokinase to glucose 6-phosphate (G6P), whereas Gal6P is metabolized to triose phosphates via the d-tagatose 6-phosphate (Tag6P) pathway, encompassing the steps catalyzed by galactose 6-phosphate isomerase (LacAB), Tag6P kinase (LacC), and tagatose 1,6-bisphosphate aldolase (LacD) (Fig. (Fig.1).1). Curiously, during the metabolism of lactose by L. lactis, part of the Gal6P is dephosphorylated and excreted into the growth medium, while the glucose moiety is readily used (2, 7, 51, 56, 60).Open in a separate windowFIG. 1.Schematic overview of the alternative routes for galactose uptake and further catabolism in L. lactis. Galactose can be imported by the non-PTS permease GalP and metabolized via the Leloir pathway (galMKTE) to α-G1P, which is converted to the glycolytic intermediate G6P by α-phosphoglucomutase (pgmH). Alternatively, galactose can be imported by PTSLac (lacFE) and further metabolized to triose phosphates by the Tag6P pathway (lacABCD). Here, we propose a new uptake route consisting of galactose translocation via the galactose PTS, followed by dephosphorylation of the internalized Gal6P to galactose, which is further metabolized via the Leloir pathway (highlighted in the gray box). galP, galactose permease; galM, galactose mutarotase; galK, galactokinase; galT, galactose 1-phosphate uridylyltransferase; galE, UDP-galactose-4-epimerase; pgmH, α-phosphoglucomutase; lacAB, galactose 6-phosphate isomerase; lacC, Tag6P kinase; lacD, tagatose 1,6-bisphosphate aldolase; lacFE, PTSLac; PTSGal, unidentified galactose PTS; Phosphatase; unidentified Gal6P-phosphatase; pgi, phosphoglucose isomerase; pfk, 6-phosphofructo-1-kinase; fba, fructose 1,6-bisphosphate aldolase; tpi, triose phosphate isomerase; α-Gal1P, α-galactose 1-phosphate; α-G1P, α-glucose 1-phosphate; UDP-gal, UDP-galactose; UDP-glc, UDP-glucose; G6P, glucose 6-phosphate; Gal6P, galactose 6-phosphate; Tag6P, tagatose 6-phosphate; TBP, tagatose 1,6-bisphosphate; FBP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde 3-phosphate. The dotted arrow represents the conversions of GAP to pyruvate via the glycolytic pathway. Steps essential to improve galactose consumption are shown in black boxes.As a result of incomplete lactose utilization, some fermented dairy products contain significant residual amounts of galactose. The presence of galactose has been associated with shoddier qualities of the fermented product (6, 27, 43). In particular, galactose is a major contributor to the browning that occurs when dairy products (e.g., yogurt and mozzarella, Swiss, and cheddar cheese) are cooked or heated in the manufacture of pizzas, sauce preparation, or processed cheese. In addition, availability of residual galactose may result in production of CO2 by heterofermentative starters and, consequently, in textural defects such as the development of slits and fractures in cheeses. Therefore, the availability of starter strains with improved galactose utilization capacity is desirable to develop higher-quality dairy products. Additionally, strains with increased galactose metabolism could provide galactose-free foods for individuals and, in particular, children suffering from the rare disease galactosemia (36). To this end, a comprehensive understanding of galactose catabolism is essential.Galactose metabolism in L. lactis was thoroughly studied in the past and has been and still is the subject of some controversy. Indeed, conflicting results regarding the type of PTS involved in galactose uptake have been published. Some authors advocated that galactose is exclusively transported via the plasmid-encoded PTSLac, whereas others proposed transport via a galactose-specific PTS (PTSGal) to the extreme of questioning the contribution of the PTSLac (17, 20, 50, 59). However, a gene encoding PTSGal has never been identified in L. lactis. Independently of the nature of the PTS, it is generally accepted that the resulting Gal6P is metabolized via the Tag6P pathway (lac operon) (Fig. (Fig.1).1). On the other hand, galactose translocated via the highly specific galactose permease (GalP) is metabolized via the Leloir pathway to α-glucose 1-phosphate (α-G1P) through the sequential action of galactose mutarotase (GalM), galactokinase (GalK), and galactose 1-phosphate uridylyltransferase (GalT)/UDP-galactose-4-epimerase (GalE) (gal operon). Entry in glycolysis is preceded by the α-phosphoglucomutase (α-PGM)-catalyzed isomerization of α-G1P to G6P. The use of the Leloir and/or the Tag6P pathway for galactose utilization is currently viewed as being strain dependent (9, 16, 25, 32, 33, 58), but the relative efficacy in the degradation of the sugar has not been established.The ultimate aim of this study was to engineer L. lactis for improved galactose-fermenting capacity as a means to minimize the galactose content in dairy products. To gain insight into galactose catabolism via the Leloir (gal genes) and the Tag6P (lac genes) pathways, a series of L. lactis subsp. cremoris NZ9000 isogenic gal and lac mutants were constructed. Carbon 13 labeling experiments coupled with nuclear magnetic resonance (NMR) spectroscopy were used to investigate galactose metabolism in the gal and lac strains. The data obtained revealed a novel route for galactose dissimilation and provided clues to further enhance galactose utilization.  相似文献   

19.
Enhanced eicosapentaenoic acid production by Navicula saprophila   总被引:1,自引:0,他引:1  
Changes in the eicosapentaenoic acid (EPA) content of Navicula saprophila grown photoautotrophically and mixotrophically with the addition of acetate were examined in terms of their growth progress. Among four conditions, mixotrophic conditions in CO2-enriched (about 2%) atmosphere gave a maximum EPA content. As sodium acetate was added to the growth medium, the EPA content increased and reached a maximum value of 34.6 mg EPA g-1 biomass in the early stationary growth phase. In contrast, under photoautotrophic conditions in CO2 enriched atmosphere, the EPA content decreased during this phase. EPA was localized as the fatty acid esters of monogalactosyl diacylglycerol, phosphatidylethanolamine and phosphatidylcholine, and the addition of acetate strongly enhanced production of the PC ester of EPA. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Staphylococcal enterotoxins A (SEA) and B (SEB) are classical models of superantigens (SAg), which induce potent T-cell-stimulating activity by forming complexes with MHC class II molecules on antigen-presenting cells. This large-scale activation of T-cells is accompanied by increased production of cytokines such as interferon-γ (IFN-γ). Additionally, as we previously reported, IFN-γ-producing CD8(+) T cells act as "helper cells," supporting the ability of dendritic cells to produce interleukin-12 (IL-12)p70. Here, we show that DC pulsed with SAg promote the enhancement of anti-tumor immunity. Murine bone marrow-derived dendritic cells (DC) were pulsed with OVA(257-264) (SIINFEKL), which is an H-2Kb target epitope of EG7 [ovalbumin (OVA)-expressing EL4] cell lines, in the presence of SEA and SEB and were subcutaneously injected into na?ve C57BL/6 mice. SAg plus OVA(257-264)-pulsed DC vaccine strongly enhanced peptide-specific CD8(+) T cells exhibiting OVA(257-264)-specific cytotoxic activity and IFN-γ production, leading to the induction of protective immunity against EG7 tumors. Furthermore, cyclophosphamide (CY) added to SAg plus tumor-antigens (OVA(257-264), tumor lysate, or TRP-2) pulsed DC immunization markedly enhanced tumor-specific T-cell expansion and had a significant therapeutic effect against various tumors (EG7, 2LL, and B16). Superantigens are potential candidates for enhancing tumor immunity in DC vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号