首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Phosphatidylinositol-3,4-5-triphosphates (PtdIns(3,4,5)P3) formed by phosphoinositide-3-kinase (PI3K) had been known as a signaling molecule that plays important roles in diverse cellular processes such as cell signaling, metabolism, cell differentiation, and apoptosis. PtdIns(3,4,5)P3 regulates diverse cellular processes by recruiting effector proteins to the specific cellular locations for correct functions. In this study, we reported the inhibitory effect of small chemicals on the interaction between PtdIns(3,4,5)P3–Btk PH domain. Small chemicals were synthesized based on structural similarity of PtdInsP head-groups, and tested the inhibitory effects in vitro via surface plasmon resonance (SPR). As a result, the chemical 8 showed highest inhibitory effect with 17 μM of IC50 value. To elucidate diverse inhibitory effects of different small chemicals we employed in silico docking experiment using molecular modeling and simulation. The result of docking experiments showed chemical 8 has more hydrogen bonding with the residues in PtdIns(3,4,5)P3 binding site of Btk PH domain than others. Overall, our studies demonstrate the efficient approach to develop lipid binding inhibitors, and further we can use these chemicals to regulate effector proteins. In addition, our study would provide new insight that lipid binding domain may be the attractive therapeutic targets to treat severe human diseases.  相似文献   

2.
3.
The ENTH domain   总被引:1,自引:0,他引:1  
The epsin NH2-terminal homology (ENTH) domain is a membrane interacting module composed by a superhelix of alpha-helices. It is present at the NH2-terminus of proteins that often contain consensus sequences for binding to clathrin coat components and their accessory factors, and therefore function as endocytic adaptors. ENTH domain containing proteins have additional roles in signaling and actin regulation and may have yet other actions in the nucleus. The ENTH domain is structurally similar to the VHS domain. These domains define two families of adaptor proteins which function in membrane traffic and whose interaction with membranes is regulated, in part, by phosphoinositides.  相似文献   

4.
The epsin N-terminal homology (ENTH) domain is a protein module of approximately 150 amino acids found at the N terminus of a variety of proteins identified in yeast, plants, nematode, frog, and mammals. ENTH domains comprise multiple alpha-helices folded upon each other to form a compact globular structure that has been implicated in interactions with lipids and proteins. In characterizing this evolutionarily conserved domain, we isolated and identified tubulin as an ENTH domain-binding partner. The interaction, which is direct and has a dissociation constant of approximately 1 microm, was observed with ENTH domains of proteins present in various species. Tubulin is co-immunoprecipitated from rat brain extracts with the ENTH domain-containing proteins, epsins 1 and 2, and punctate epsin staining is observed along the microtubule cytoskeleton of dissociated cortical neurons. Consistent with a role in microtubule processes, the over-expression of epsin ENTH domain in PC12 cells stimulates neurite outgrowth. These data demonstrate an evolutionarily conserved property of ENTH domains to interact with tubulin and microtubules.  相似文献   

5.
Lipid second messengers generated by phosphoinositide (PI) 3-kinases regulate diverse cellular functions through interaction with pleckstrin homology (PH) domains in modular signaling proteins. The PH domain of Grp1, a PI 3-kinase-activated exchange factor for Arf GTPases, selectively binds phosphatidylinositol 3,4,5-trisphosphate with high affinity. We have determined the structure of the Grp1 PH domain in the unliganded form and bound to inositol 1,3,4,5-tetraphosphate. A novel mode of phosphoinositide recognition involving a 20-residue insertion within the beta6/beta7 loop explains the unusually high specificity of the Grp1 PH domain and the promiscuous 3-phosphoinositide binding typical of several PH domains including that of protein kinase B. When compared to other PH domains, general determinants of 3-phosphoinositide recognition and specificity can be deduced.  相似文献   

6.
SNARE proteins on transport vesicles and target membranes have important roles in vesicle targeting and fusion. Therefore, localization and activity of SNAREs have to be tightly controlled. Regulatory proteins bind to N-terminal domains of some SNAREs. vti1b is a mammalian SNARE that functions in late endosomal fusion. To investigate the role of the N terminus of vti1b we performed a yeast two-hybrid screen. The N terminus of vti1b interacted specifically with the epsin N-terminal homology (ENTH) domain of enthoprotin/CLINT/epsinR. The interaction was confirmed using in vitro binding assays. This complex formation between a SNARE and an ENTH domain was conserved between mammals and yeast. Yeast Vti1p interacted with the ENTH domain of Ent3p. ENTH proteins are involved in the formation of clathrin-coated vesicles. Both epsinR and Ent3p bind adaptor proteins at the trans-Golgi network. Vti1p is required for multiple transport steps in the endosomal system. Genetic interactions between VTI1 and ENT3 were investigated. Synthetic defects suggested that Vti1p and Ent3p cooperate in transport from the trans-Golgi network to the prevacuolar endosome. Our experiments identified the first cytoplasmic protein binding to specific ENTH domains. These results point toward a novel function of the ENTH domain and a connection between proteins that function either in vesicle formation or in vesicle fusion.  相似文献   

7.
Epsin possesses a conserved epsin N-terminal homology (ENTH) domain that acts as a phosphatidylinositol 4,5-bisphosphate‐lipid‐targeting and membrane‐curvature‐generating element. Upon binding phosphatidylinositol 4,5‐bisphosphate, the N-terminal helix (H0) of the ENTH domain becomes structured and aids in the aggregation of ENTH domains, which results in extensive membrane remodeling. In this article, atomistic and coarse-grained (CG) molecular dynamics (MD) simulations are used to investigate the structure and the stability of ENTH domain aggregates on lipid bilayers. EPR experiments are also reported for systems composed of different ENTH-bound membrane morphologies, including membrane vesicles as well as preformed membrane tubules. The EPR data are used to help develop a molecular model of ENTH domain aggregates on preformed lipid tubules that are then studied by CG MD simulation. The combined computational and experimental approach suggests that ENTH domains exist predominantly as monomers on vesiculated structures, while ENTH domains self-associate into dimeric structures and even higher‐order oligomers on the membrane tubes. The results emphasize that the arrangement of ENTH domain aggregates depends strongly on whether the local membrane curvature is isotropic or anisotropic. The molecular mechanism of ENTH‐domain-induced membrane vesiculation and tubulation and the implications of the epsin's role in clathrin-mediated endocytosis resulting from the interplay between ENTH domain membrane binding and ENTH domain self-association are also discussed.  相似文献   

8.
Huntingtin-interacting protein 1-related (HIP1r) is the only known mammalian relative of huntingtin-interacting protein 1 (HIP1), a protein that transforms fibroblasts via undefined mechanisms. Here we demonstrate that both HIP1r and HIP1 bind inositol lipids via their epsin N-terminal homology (ENTH) domains. In contrast to other ENTH domain-containing proteins, lipid binding is preferential to the 3-phosphate-containing inositol lipids, phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,5-bisphosphate. Furthermore, the HIP1r ENTH domain, like that of HIP1, is necessary for lipid binding, and expression of an ENTH domain-deletion mutant, HIP1r/deltaE, induces apoptosis. Consistent with the ability of HIP1r and HIP1 to affect cell survival, full-length HIP1 and HIP1r stabilize pools of growth factor receptors by prolonging their half-life following ligand-induced endocytosis. Although HIP1r and HIP1 display only a partially overlapping pattern of protein interactions, these data suggest that both proteins share a functional homology by binding 3-phosphorylated inositol lipids and stabilizing receptor tyrosine kinases in a fashion that may contribute to their ability to alter cell growth and survival.  相似文献   

9.
Inositol phospholipid (phosphoinositide) is a versatile lipid characterized by its isomer-specific localization, as well as its molecular diversity attributable to phosphorylation events. Phosphoinositides act as signal mediators in a spatially and temporally controlled manner. Information about the timing and location of their production is received by phosphoinositide-binding proteins and transmitted to multiple lines of intracellular events such as signal transduction, cytoskeletal rearrangement, and membrane trafficking. Among those proteins, a significant portion possess globular structural units, called domains, which are specialized for phosphoinositide binding. The pleckstrin homology (PH) domain was the first phosphoinositide-binding domain identified. It contains the largest number of members and is associated with the formation of signalling complexes on the plasma membrane. Recent studies identified other novel phosphoinositide-binding domains (Fab1p, YOTB, Vps27p, EEA1 (FYVE), Phox homology (PX), and epsin N-terminal homology (ENTH)), thus extending our knowledge of how the functional versatility of phosphoinositides is achieved.  相似文献   

10.
Tepsin is currently the only accessory trafficking protein identified in adaptor‐related protein 4 (AP4)‐coated vesicles originating at the trans‐Golgi network (TGN). The molecular basis for interactions between AP4 subunits and motifs in the tepsin C‐terminus have been characterized, but the biological role of tepsin remains unknown. We determined X‐ray crystal structures of the tepsin epsin N‐terminal homology (ENTH) and VHS/ENTH‐like domains. Our data reveal unexpected structural features that suggest key functional differences between these and similar domains in other trafficking proteins. The tepsin ENTH domain lacks helix0, helix8 and a lipid binding pocket found in epsin1/2/3. These results explain why tepsin requires AP4 for its membrane recruitment and further suggest ENTH domains cannot be defined solely as lipid binding modules. The VHS domain lacks helix8 and thus contains fewer helices than other VHS domains. Structural data explain biochemical and biophysical evidence that tepsin VHS does not mediate known VHS functions, including recognition of dileucine‐based cargo motifs or ubiquitin. Structural comparisons indicate the domains are very similar to each other, and phylogenetic analysis reveals their evolutionary pattern within the domain superfamily. Phylogenetics and comparative genomics further show tepsin within a monophyletic clade that diverged away from epsins early in evolutionary history (~1500 million years ago). Together, these data provide the first detailed molecular view of tepsin and suggest tepsin structure and function diverged away from other epsins. More broadly, these data highlight the challenges inherent in classifying and understanding protein function based only on sequence and structure.   相似文献   

11.
Pleckstrin homology (PH) domains have been proven to bind phosphoinositides (PI) and inositolphosphates (IP). On the other hand, a binding of PH domains to proteins is still a matter of debate. The goal of this work was to identify potential PH domain protein target sites and to build a model for PH domain–protein binding. A candidate sequence, called HIKE, was identified by sequence homology analysis of the proteins that are considered the strongest PH binding candidates, i.e., Gβ, PKC, and Akt. HIKE contains a PI binding sequence and fulfills several criteria for a potential PH-binding site, i.e., it is present in other PH-binding candidates, lies in regulatory regions independently predicted to bind PH domains, and is conserved in 3-D structure among different molecules. These findings and the similarities with the mode of binding of PTB and PDZ domains suggest a β strand–β strand coordination model for PH–protein binding. The HIKE model predicts that membrane anchoring of PH domains and their targets could be a critical step in their interaction, which would consistently explain why PH–protein binding has only been detected in the presence of PI. Proteins 31:1–9, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Human adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1 (APPL1) and adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 2 (APPL2) are homologous effectors of the small guanosine triphosphatase RAB5 that interact with a diverse set of receptors and signaling proteins and are proposed to function in endosome-mediated signaling. Herein, we investigated the membrane-targeting properties of the APPL1 and APPL2 Bin/Amphiphysin/Rvs (BAR), pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains. Coimmunoprecipitation and yeast two-hybrid studies demonstrated that full-length APPL proteins formed homooligomers and heterooligomers and that the APPL minimal BAR domains were necessary and sufficient for mediating APPL-APPL interactions. When fused to a fluorescent protein and overexpressed, all three domains (minimal BAR, PH and PTB) were targeted to cell membranes. Furthermore, full-length APPL proteins bound to phosphoinositides, and the APPL isolated PH or PTB domains were sufficient for in vitro phosphoinositide binding. Live cell imaging showed that full-length APPL-yellow fluorescent protein (YFP) fusion proteins associated with cytosolic membrane structures that underwent movement, fusion and fission events. Overexpression of full-length APPL-YFP fusion proteins was sufficient to recruit endogenous RAB5 to enlarged APPL-associated membrane structures, although APPL1 was not necessary for RAB5 membrane targeting. Taken together, our findings suggest a role for APPL proteins as dynamic scaffolds that modulate RAB5-associated signaling endosomal membranes by their ability to undergo domain-mediated oligomerization, membrane targeting and phosphoinositide binding.  相似文献   

13.
Epsin and AP180/CALM are endocytotic accessory proteins that have been implicated in the formation of clathrin-coated pits. Both proteins have phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding domains in their N termini, but these domains are structurally and functionally different. To understand the basis of their distinct properties, we measured the PtdIns(4,5)P2-dependent membrane binding of the epsin N-terminal homology (ENTH) domain and the AP180 N-terminal homology (ANTH) domain by means of surface plasmon resonance and monolayer penetration techniques and also calculated the effect of PtdIns(4,5)P2 on the electrostatic potential of these domains. PtdIns(4,5)P2 enhances the electrostatic membrane association of both domains; however, PtdIns(4,5)P2 binding exerts distinct effects on their membrane dissociation. Specifically, PtdIns(4,5)P2 induces the membrane penetration of the N-terminal alpha-helix of the ENTH domain, which slows the membrane dissociation of the domain and triggers the membrane deformation. These results provide the biophysical explanation for the membrane bending activity of epsin and its ENTH domain.  相似文献   

14.
The pleckstrin homology (PH) domains of the homologous proteins Grp1 (general receptor for phosphoinositides), ARNO (Arf nucleotide binding site opener), and Cytohesin-1 bind phosphatidylinositol (PtdIns) 3,4,5-trisphosphate with unusually high selectivity. Remarkably, splice variants that differ only by the insertion of a single glycine residue in the beta1/beta2 loop exhibit dual specificity for PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2). The structural basis for this dramatic specificity switch is not apparent from the known modes of phosphoinositide recognition. Here, we report crystal structures for dual specificity variants of the Grp1 and ARNO PH domains in either the unliganded form or in complex with the head groups of PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3). Loss of contacts with the beta1/beta2 loop with no significant change in head group orientation accounts for the significant decrease in PtdIns(3,4,5)P(3) affinity observed for the dual specificity variants. Conversely, a small increase rather than decrease in affinity for PtdIns(4,5)P(2) is explained by a novel binding mode, in which the glycine insertion alleviates unfavorable interactions with the beta1/beta2 loop. These observations are supported by a systematic mutational analysis of the determinants of phosphoinositide recognition.  相似文献   

15.
The signaling enzyme phospholipase D1 (PLD1) facilitates membrane vesicle trafficking. Here, we explore how PLD1 subcellular localization is regulated via Phox homology (PX) and pleckstrin homology (PH) domains and a PI4,5P2-binding site critical for its activation. PLD1 localized to perinuclear endosomes and Golgi in COS-7 cells, but on cellular stimulation, translocated to the plasma membrane in an activity-facilitated manner and then returned to the endosomes. The PI4,5P2-interacting site sufficed to mediate outward translocation and association with the plasma membrane. However, in the absence of PX and PH domains, PLD1 was unable to return efficiently to the endosomes. The PX and PH domains appear to facilitate internalization at different steps. The PH domain drives PLD1 entry into lipid rafts, which we show to be a step critical for internalization. In contrast, the PX domain appears to mediate binding to PI5P, a lipid newly recognized to accumulate in endocytosing vesicles. Finally, we show that the PH domain-dependent translocation step, but not the PX domain, is required for PLD1 to function in regulated exocytosis in PC12 cells. We propose that PLD1 localization and function involves regulated and continual cycling through a succession of subcellular sites, mediated by successive combinations of membrane association interactions.  相似文献   

16.
Phosphoinositide recognition domains   总被引:10,自引:0,他引:10  
Domains or modules known to bind phosphoinositides have increased dramatically in number over the past few years, and are found in proteins involved in intracellular trafficking, cellular signaling, and cytoskeletal remodeling. Analysis of lipid binding by these domains and its structural basis has provided significant insight into the mechanism of membrane recruitment by the different cellular phosphoinositides. Domains that target only the rare (3-phosphorylated) phosphoinositides must bind with very high affinity, and with exquisite specificity. This is achieved solely by headgroup interactions in the case of certain pleckstrin homology (PH) domains [which bind PtdIns(3,4,5)P3 and/or PtdIns(3,4)P2], but requires an additional membrane-insertion and/or oligomerization component in the case of the PtdIns(3)P-targeting phox homology (PX) and FYVE domains. Domains that target PtdIns(4,5)P2, which is more abundant by some 25-fold, do not require the same stringent affinity and specificity characteristics, and tend to be more diverse in structure. The mode of phosphoinositide binding by different domains also appears to reflect their distinct functions. For example, pleckstrin homology domains that serve as simple targeting domains recognize only phosphoinositide headgroups. By contrast, certain other domains, notably the epsin ENTH domain, appear to promote bilayer curvature by inserting into the membrane upon binding .  相似文献   

17.
Many membrane-associated proteins are involved in various signaling pathways, including the phosphoinositide 3-kinase (PI3K) pathway, which has key roles in diverse cellular processes. Disruption of the activities of these proteins is involved in the development of disease in humans, making these proteins promising targets for drug development. In most cases, the catalytic domain is targeted; however, it is also possible to target membrane associations in order to regulate protein activity. In this study, we established a novel method to study protein-lipid interactions and screened for flavonoid-derived antagonists of PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 (PDK1) pleckstrin homology (PH) domain. Using an enhanced green fluorescent protein (eGFP)-tagged PDK1 PH domain and 50% sucrose-loaded liposomes, the protein-lipid interaction could be efficiently evaluated using liposome pull-down assays coupled with fluorescence spectrophotometry, and a total of 32 flavonoids were screened as antagonists for PtdIns(3,4,5)P3 binding with the PDK1 PH domain. From this analysis, we found that two adjunct hydroxyl groups in the C ring were responsible for the inhibitory effects of the flavonoids. Because the flavonoids shared structural similarities, the results were then subjected to quantitative structure-activity relationship (QSAR) analysis. The results were then further confirmed by in silico docking experiments. Taken together, our strategy presented herein to screen antagonists targeting lipid-protein interactions could be an alternative method for identification and characterization of drug candidates.  相似文献   

18.
Rho kinase (ROCK), a downstream effector of Rho GTPase, is a serine/threonine protein kinase that regulates many crucial cellular processes via control of cytoskeletal structures. The C-terminal PH-C1 tandem of ROCKs has been implicated to play an autoinhibitory role by sequestering the N-terminal kinase domain and reducing its kinase activity. The binding of lipids to the pleckstrin homology (PH) domain not only regulates the localization of the protein but also releases the kinase domain from the close conformation and thereby activates its kinase activity. However, the molecular mechanism governing the ROCK PH-C1 tandem-mediated lipid membrane interaction is not known. In this study, we demonstrate that ROCK is a new member of the split PH domain family of proteins. The ROCK split PH domain folds into a canonical PH domain structure. The insertion of the atypical C1 domain in the middle does not alter the structure of the PH domain. We further show that the C1 domain of ROCK lacks the diacylglycerol/phorbol ester binding pocket seen in other canonical C1 domains. Instead, the inserted C1 domain and the PH domain function cooperatively in binding to membrane bilayers via the unconventional positively charged surfaces on each domain. Finally, the analysis of all split PH domains with known structures indicates that split PH domains represent a unique class of tandem protein modules, each possessing distinct structural and functional features.  相似文献   

19.
The Bcr-Abl protein is a marker for malignant transformation in chronic myeloid leukemia and in acute lymphoblastic leukemia. There are three Bcr-Abl chimeras known so far, p190, p210 and p230. The only structural difference between the three Bcr-Abl proteins is the presence of DH and PH domains from the Bcr gene in p210 and p230. The Bcr-Abl DH domain is functioning as a guanine nucleotide exchange factor for Rho family of small GTPases. The PH domain confers binding to phosphoinositides but some PH domains have also been found to bind specific target proteins. Here we show that the PH domain from Bcr-Abl binds a number of proteins involved in vital cellular processes. These proteins include PLC?, Zizimin1, tubulin and SMC1. The revelation of the role of the Bcr-Abl PH domain in leukemogenesis is likely to provide clues to the molecular mechanisms underlying the phenotypes of Bcr-Abl positive leukemia and could therefore provide tools for the identification of targets for the development of therapeutic treatments.  相似文献   

20.
FYVE domains are small zinc-finger-like domains found in many proteins that are involved in regulating membrane traffic and have been shown to bind specifically to phosphatidylinositol 3-phosphate (PtdIns-3-P). FYVE domains are thought to recruit PtdIns-3-P effectors to endosomal locations in vivo, where these effectors participate in controlling endosomal maturation and vacuolar protein sorting. We have compared the characteristics of PtdIns-3-P binding by the FYVE domain from Hrs-1 (the hepatocyte growth factor-regulated tyrosine kinase substrate) with those of specific phosphoinositide binding by Pleckstrin homology (PH) domains. Like certain PH domains (such as that from phospholipase C-delta(1)), the Hrs-1 FYVE domain specifically recognizes a single phosphoinositide. However, while phosphoinositide binding by highly specific PH domains is driven almost exclusively by interactions with the lipid headgroup, this is not true for the Hrs-1 FYVE domain. The phospholipase C-delta(1) PH domain shows a 10-fold preference for binding isolated headgroup over its preferred lipid (phosphatidylinositol 4,5-bisphosphate) in a membrane, while the Hrs-1 FYVE domain greatly prefers (more than 50-fold) intact lipid in a bilayer over the isolated headgroup (inositol 1,3-bisphosphate). By contrast with reports for certain PH domains, we find that this preference for membrane binding over interaction with soluble lipid headgroups does not require FYVE domain oligomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号