首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regioselective enzymatic acylations of 1-β-d-arabinofuranosylcytosine (ara-C) with vinyl laurate (VL) in binary organic solvents were explored for the preparation of 5′-O-laurate of ara-C. Among the nine kinds of enzymes, Novozym 435 showed the highest regioselectivity (>99.9%) towards the 5′-OH of ara-C. This lipase showed higher catalytic activity in hexane–pyridine than in other tested solvent mixtures. The most suitable VL to ara-C molar ratio, initial water activity, and reaction temperature were shown to be 15:1, 0.07, and 50 °C, respectively, under which the initial reaction rate and the maximum substrate conversion were as high as 84.0 mmol L?1 h?1 and 98.1%, respectively. The product of Novozym 435-catalyzed acylation was characterized by 13C NMR and confirmed to be 5′-O-laurate of ara-C.  相似文献   

2.
To develop a robust whole-cell biocatalyst that works well at moderately high temperature (40–50 °C) with organic solvents, a thermostable lipase from Geobacillus thermocatenulatus (BTL2) was introduced into an Aspergillus oryzae whole-cell biocatalyst. The lipase-hydrolytic activity of the immobilized A. oryzae (r-BTL) was highest at 50 °C and was maintained even after an incubation of 24-h at 60 °C. In addition, r-BTL was highly tolerant to 30% (v/v) organic solvents (dimethyl carbonate, ethanol, methanol, 2-propanol or acetone). The attractive characteristics of r-BTL also worked efficiently on palm oil methanolysis, resulting in a nearly 100% conversion at elevated temperature from 40 to 50 °C. Moreover, r-BTL catalyzed methanolysis at a high methanol concentration without a significant loss of lipase activity. In particular, when 2 molar equivalents of methanol were added 2 times, a methyl ester content of more than 90% was achieved; the yield was higher than those of conventional whole-cell biocatalyst and commercial Candida antarctica lipase (Novozym 435). On the basis of the results regarding the excellent lipase characteristics and efficient biodiesel production, the developed whole-cell biocatalyst would be a promising biocatalyst in a broad range of applications including biodiesel production.  相似文献   

3.
An organic solvent-stable alkaline protease producing bacterium was isolated from the crude oil contaminant soil and identified as Bacillus licheniformis. The enzyme retained more than 95% of its initial activity after pre-incubation at 40 °C for 1 h in the presence of 50% (v/v) organic solvents such as DMSO, DMF, and cyclohexane. The protease was active in a broad range of pH from 8.0 to 12.0 with the optimum pH 9.5. The optimum temperature for this protease activity was 60 °C, and the enzyme remained active after incubation at 50–60 °C for 1 h. This organic solvent-stable protease could be used as a biocatalyst for organic solvent-based enzymatic synthesis.  相似文献   

4.
Lipase from Thermomyces lanuginosus (TLL) was immobilized on mesoporous hydrophobic poly-methacrylate (PMA) particles via physical adsorption (interfacial activation of the enzyme on the support). The influence of initial protein loading (5–200 mg/g of support) on the catalytic properties of the biocatalysts was determined in the hydrolysis of olive oil emulsion and synthesis of isoamyl oleate (biolubricant) by esterification reaction. Maximum adsorbed protein loading and hydrolytic activity were respectively ≈100 mg/g and ≈650 IU/g using protein loading of 150 mg/g of support. The adsorption process followed the Langmuir isotherm model (R2 = 0.9743). Maximum ester conversion around 85% was reached after 30 min of reaction under continuous agitation (200 rpm) using 2500 mM of each reactant in a solvent-free system, 45 °C, 20% m/v of the biocatalyst prepared using 100 mg of protein/g of support. Apparent thermodynamic parameters of the esterification reaction were also determined. Under optimal experimental conditions, reusability tests of the biocatalyst (TLL-PMA) after thirty successive cycles of reaction were performed. TLL-PMA fully retained its initial activity up to twenty two cycles of reaction, followed by a slight decrease around 8.6%. The nature of the product (isoamyl oleate) was confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR), proton (1H NMR) and carbon (13C NMR) nuclear magnetic resonance spectroscopy analyses.  相似文献   

5.
A solvent-tolerant bacterium Burkholderia ambifaria YCJ01 was newly isolated by DMSO enrichment of the medium. The lipase from the strain YCJ01 was purified to homogeneity with apparent molecular mass of 34 kDa determined by SDS-PAGE. The purified lipase exhibited maximal activity at a temperature of 60 °C and a pH of 7.5. The lipase was very stable below 55 °C for 7 days (remaining 80.3% initial activity) or at 30 °C for 60 days. PMSF significantly inhibited the lipase activity, while EDTA had no effect on the activity. Strikingly, the lipase showed distinct super-stability to the most tested hydrophilic and hydrophobic solvents (25%, v/v) for 60 days, and different optimal pH in contrast with the alkaline lipase from B. cepacia S31. The lipase demonstrated excellent enantioselective transesterification toward the S-isomer of mandelic acid with a theoretical conversion yield of 50%, eep of 99.9% and ees of 99.9%, which made it an exploitable biocatalyst for organic synthesis and pharmaceutical industries.  相似文献   

6.
《Process Biochemistry》2014,49(7):1169-1175
An efficient and green immobilized biocatalyst is herein reported to obtain 5-fluorouracil-2′-deoxyriboside (5FUradRib), an antimetabolite known as Floxuridine, used in gastrointestinal cancer treatment.Alginate is a natural polysaccharide used in the pharmaceutical industry due to its physicochemical properties, biocompatibility and non-toxicity. Multivalent cations, exposure time and cross-linking solution concentration were optimized, being Sr2+, 2 h and 0.2 M the best immobilization conditions. Furthermore, compression strength, swelling ratio and fracture frequency were evaluated, improving the mechanical stability of the biocatalyst favoring a future scale-up.On the other hand, the reaction parameters for 5FUradRib biosynthesis were optimized in order to obtain an immobilized biocatalyst with enhanced activity. Thus, Lactobacillus animalis ATCC 35046 immobilized in Sr-alginate showed yields of 96% at short reaction times.The obtained biocatalyst was stable for more than 25 days in storage conditions (4 °C) and could be reused at least 10 times without loss of its activity.Additionally, Sr-alginate biocatalyst stability was evaluated in different organic solvents to obtain hydrophobic compounds such as 5-bromouracil-2′-deoxyriboside (5BrUradRib), an effective radiosensitizing agent used in anti-cancer therapy, being hexane the best co-solvent.Finally, a smooth, cheap and environmentally friendly method to obtain anti-cancer drugs was developed in this study.  相似文献   

7.
A solvent engineering strategy was applied to the lipase-catalyzed methanolysis of triacylglycerols for biodiesel production. The effect of different pure organic solvents and co-solvent mixtures on the methanolysis was compared. The substrate conversions in the co-solvent mixtures were all higher than those of the corresponding pure organic solvents. Further study showed that addition of co-solvent decreased the values of |log Pinterface  log Psubstrate| and thus led to a faster reaction. The more the values of |log Pinterface  log Psubstrate| decreased, the faster the reaction proceeded and the higher the conversion attained. Different co-solvent ratio was further investigated. The co-solvent mixture of 25% t-pentanol:75% isooctane (v/v) was optimal, with which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated. There was no obvious loss in lipase activity even after being repeatedly used for 60 cycles (720 h) with this co-solvent mixture as reaction medium. Other lipases and lipase combinations can also catalyze methanolysis in this co-solvent mixture. Furthermore, other vegetable oils were also explored for biodiesel production in this co-solvent mixture and it had been found that this co-solvent mixture media has extensive applicability.  相似文献   

8.
A novel cold active esterase, EstLiu was cloned from the marine bacterium Zunongwangia profunda, overexpressed in E. coli BL21 (DE3) and purified by glutathione-S transferase (GST) affinity chromatography. The mature esterase EstLiu sequence encodes a protein of 273 amino acids residues, with a predicted molecular weight of 30 KDa and containing the classical pentapeptidase motif from position 156 to 160 with the catalytic triad Ser158-Asp211-His243. Although, EstLiu showed 64% similarity with the hypothetical esterase from Chryseobacterium sp. StRB126 (WP_045498424), phylogenetic analysis showed it had no similarity with any of the established family of lipases/esterases, suggesting that it could be considered as a new family. The purified enzyme showed broad substrate specificity with the highest hydrolytic activity against p-nitrophenyl butyrate (C4). EstLiu showed remarkable activity (75%) at 0 °Cand the optimal activity at pH 8.0 and 30 °C with good thermostability and quickened inactivation above 60 °C. EstLiu retained 81, 103, 67 and 78% of its original activity at 50% (v/v) in ethanol, isopropanol, DMSO and ethylene glycol, respectively. In the presence of Tween 20, Tween 80 and Triton X-100, EstLiu showed 88, 100 and 117% of relative activity. It is also co-factor independent. The high activity at low temperature and desirable stability in organic solvents and salts of this novel family esterase represents a good evidence of novel biocatalyst. Overall, this novel enzyme showed better activity than previously reported esterases in extreme reaction conditions and could promote the reaction in both aqueous and non-aqueous conditions, indicating its great potential for industrial applications.  相似文献   

9.
Purine arabinosides are well known antiviral and antineoplastic drugs. Since their chemical synthesis is complex, time-consuming, and polluting, enzymatic synthesis provides an advantageous alternative. In this work, we describe the microbial whole cell synthesis of purine arabinosides through nucleoside phosphorylase-catalyzed transglycosylation starting from their pyrimidine precursors. By screening of our microbial collection, Citrobacter koseri (CECT 856) was selected as the best biocatalyst for the proposed biotransformation. In order to enlarge the scale of the transformations to 150 mL for future industrial applications, the biocatalyst immobilization by entrapment techniques and its behavior in different reactor configurations, considering both batch and continuous processes, were analyzed. C. koseri immobilized in agarose could be used up to 68 times and the storage stability was at least 9 months. By this approach, fludarabine (58% yield in 14 h), vidarabine (71% yield in 26 h) and 2,6-diaminopurine arabinoside (77% yield in 24 h), were prepared.  相似文献   

10.
(Z)-3-hexen-1-yl esters are important green top-note components of food flavors and fragrances. Effects of various process conditions on (Z)-3-hexen-1-yl caproate synthesis employing germinated rapeseed lipase acetone powder in organic solvent were investigated. Rapeseed lipase catalyzed ester formation more efficiently with non-polar compared to polar solvents despite high enzyme stability in both types of solvents. Maximum ester yield (90%) was obtained when 0.125 M (Z)-3-hexen-1-ol and caproic acid were reacted at 25 °C for 48 h in the presence of 50 g/L enzyme in heptane. Enzyme showed little sensitivity towards aw with optimum yield at 0.45, while added water did not affect ester yield. Esterification reduced by increasing molecular sieves (>0.0125%, w/v). The highest yields of caproic acid were obtained with isoamyl alcohol (93%) followed by butanol and (Z)-3-hexen-1-o1 (88%) respectively reflecting the enzyme specificity for straight and branched chain alcohols. Secondary alcohols showed low reactivity, while tertiary alcohol had either very low reactivity or not esterified at all. A good relationship has been found between ester synthesis and the solvent polarity (log P value); while no correlation for the effect of solvents on residual enzyme activity was observed. It may be concluded that germinated rapeseed lipase is a promising biocatalyst for the synthesis of valuable green flavor note compound. The enzyme also showed a wide range of temperature stability (5–50 °C).  相似文献   

11.
In this paper, enzymatic regioselective acylation of 1-β-D-arabinofuranosylcytosine (ara-C) with vinyl benzoate (VB) using immobilized Candida antarctica lipase B in binary organic solvents was explored. It was found that the lipase showed high regioselectivity (> 99%) towards the 5′-OH of ara-C in the representative organic solvent mixture (hexane-pyridine). To understand the enzymatic processes and provide a fair comparison of hexane-pyridine with C4MIm·PF6-pyridine (the representative ionic liquid-containing system), the effect of each process variable on the reactions in hexane-pyridine was investigated. The results indicate that the optimum hexane content, initial a w , molar ratio of VB to ara-C, and temperature were 28% (v/v), 0.11, 15, and 40°C, respectively. Under optimized conditions, the initial reaction rate in hexanepyridine (44.4 mM/h) was much higher than that in C4MIm·PF6-pyridine (29.4 mM/h) for each case. The maximum conversion yield, however, was increased when the reaction system was shifted from hexane-pyridine to C4MIm·PF6-pyridine. Further study revealed that the presence of an acidic by-product (benzoate acid, released during the acylation process) may cause rapid inactivation of the enzyme in hexane-pyridine, leading to a lower conversion rate, whereas the ionic liquid may have coating and protecting effects on the lipase during the reaction.  相似文献   

12.
Lipase of Rhizopus arrhizus was immobilized on O-propargyl dextran (PgD) and O-pentynyl dextran (PyD). Compared with Lewatit VP OC 1600 cation ion exchange resin, wood shaves, fuller earth, silica and alumina, PgD with degree of substitution (DS) of 0.68 and a surface of 10 m2/g was found to be the most effective immobilization support and an excellent biocatalyst for esterification reactions in organic solvents as the synthesis of click beetle pheromone geranyl octanoate. PyD (DS 0.44) with a surface of 3.3 m2/g was of similar high efficiency. For the enzymatic esterification the optimum concentration of geraniol and octanoic acid was 0.4 mol L?1 each. The biocatalyst worked the best in hexane at a moisture level of 0.02%. The enzyme could be repeatedly used and conversion dropped from 80% to 70% after four cycles, while reaction rate even increased when repeatedly employed.  相似文献   

13.
The hydrophobic bacterium Rhodococcus rhodochrous NBRC15564 was employed as a whole-cell biocatalyst to examine its potential for bioconversion in solvent-free organic media. The genes encoding two different thermostable alcohol dehydrogenases (ADHTt1 and ADHTt2) of Thermus thermophilus HB27 were expressed in R. rhodochrous cells. To inactivate indigenous mesophilic enzymes in R. rhodochrous, transformant cells were heated at 70 °C for 10 min. Heat-treated hydrophobic wet cells were used for the bioconversion of 2,2,2-trifluoroacetophenone (TFAP) to α-(trifluoromethyl) benzyl alcohol (TFMBA) as a model reaction with ADHTt1. NADH, which was supplied in aqueous solution, was regenerated by converting cyclohexanol to cyclohexanone by ADHTt2. All reactions were performed by suspending heat-treated cells in solvent-free organic media consisting of 3.7 M TFAP and 4.8 M cyclohexanol (1:1, v/v ratio) at 60 °C. When 800 mg heat-treated R. rhodochrous cells were dispersed in 2 mL of solvent-free organic media (400 mg cells/mL), the product concentration reached about 3.6 M TFMBA by 48 h with a total NADH turnover number of approximately 900. The overall productivity was 190 mol TFMBA/kg cells/h.  相似文献   

14.
Optically active epoxides can be prepared by kinetic resolution of racemic mixtures using stereospecific epoxide hydrolases. To increase the bio-resolution efficiency of a sparingly water-soluble epoxide (glycidyl phenyl ether, GPE), we investigated the use of organic/aqueous two-phase system. Various conditions were systematically examined and optimized in shake flasks. Isooctane was found to be the most suitable solvent as the organic phase. The phase volume ratio (ϕo/w) and biocatalyst concentration were shown to be sensitive parameters affecting both the reaction rate and the enzyme enantiospecificity in the biphase system. An isooctane/aqueous system was developed to overcome the low solubility and instability of GPE in the aqueous phase, resulting in a significant improvement of enatiomeric ratio (E-value) from 39.5 to 94.0 and an average productivity of 18.8 mg GPE/(h g) biocatalyst to 48.9 mg GPE/(h g) biocatalyst, respectively. Resolution of a 90.1 g/l solution of racemic glycidyl phenyl ether in isooctane phase was successfully carried out in a mechanically stirred reactor (120 ml), affording (S)-glycidyl phenyl ether in high (100%) enantiomeric excess with a yield of 44.5%.  相似文献   

15.
Poly-hydroxybutyrate particles (PHB) were used as support to immobilize porcine pancreatic lipase (PPL). The biocatalysts prepared were tested in the synthesis of pineapple flavor by esterification of butanol and butyric acid in heptane medium, and in the synthesis of ethyl esters by transesterification of macaw palm pulp (MPPO) and macaw palm kernel (MPKO) oils with ethanol in solvent-free systems. The effect of protein loading on the biocatalyst activity was assessed in olive oil hydrolysis. Maximum hydrolytic activity of 292.8 ± 8.60 IU/g was observed. Langmuir isotherm model was applicable to the adsorption of PPL on PHB particles. Maximum immobilized protein amount was 24.3 ± 1.70 mg/g. The optimal pH and temperature in hydrolysis reaction for the immobilized PPL were at pH 8.5 and 50 °C, while for the crude PPL extract were at pH 8.0 and 45 °C. Immobilized PPL exhibited full hydrolytic activity after 2 h of incubation in non-polar solvents. In esterification reaction, optimal conversion was around 93% after 2 h of reaction. After six esterification cycles, the biocatalyst retained 63% of its initial activity. The biocatalyst prepared attained transesterification yield of 50% after 48 h of reaction for MPKO and 35% after 96 h of reaction for MPPO.  相似文献   

16.
An efficient procedure for enzymatic desymmetrization of the prochiral dimethyl 3-(4-fluorophenyl)glutarate (3-DFG) in an aqueous–organic phase was successfully developed to prepare methyl (R)-3-(4-fluorophenyl)glutarate ((R)-3-MFG). Novozym 435 was selected as a highly efficient biocatalyst through lipase screening. The effects of various parameters in terms of co-solvent and its concentration, buffer pH, ionic strength and reaction temperature, on the reaction were investigated. It was found that 0.2 M phosphate buffer (pH 8.0) containing 20% MTBE (v/v) was the optimum reaction medium, and the optimum reaction temperature was 30 °C. Under the optimized reaction conditions, (R)-3-MFG was obtained in 95.6% ee value and 92.6% yield after 64 h when the concentration of 3-DFG and Novozym 435 were 200 mmol/l and 20 g/l respectively. Furthermore, Novozym 435 showed an excellent operational stability, retaining above 95% of the initial activity and enantioselectivity after 10 cycles of reaction. The developed method has a potential to be used for efficient enzymatic production of (R)-3-MFG.  相似文献   

17.
Lipase B from Candida antarctica (CALB) has been immobilized on octyl-agarose in two ways: rapidly, in 5 mM sodium phosphate (85% immobilization yield after 30 min), or slowly, in the presence of 30% (v/v) ethanol (40% immobilization yield after 30 min). Both biocatalysts were treated with glutaraldehyde in order to obtain different modification degrees on their amino groups (25, 50 and 100% modification). SDS-PAGE and detergent desorption experiments showed that, when the immobilization was performed in absence of ethanol, very large aggregates were formed by intermolecular crosslinking, while when 30% ethanol was added during immobilization, almost 90% of the enzyme remained as a monomer. The stability of both derivatives improved upon modification, both in thermal inactivation experiments (at pHs 5, 7 and 9) or in the presence of 50% (v/v) dimethylsulfoxide, achieving stabilization values ranging between 5 and 20 depending on the inactivation conditions. The stability increased proportionally with the modification degree, and was also higher when intermolecular bonds were performed (by a 2–4 factor). Moreover, the activity/pH profile was completely altered after enzyme modification, and, under certain conditions, the activity of the modified biocatalysts doubled that of the non-modified immobilized CALB. Results show that the addition of ethanol permits to have a distance between enzyme molecules that did not allow intermolecular crosslinking, and this has permitted to distinguish between the effects of intramolecular glutaraldehyde modifications and intermolecular glutaraldehyde crosslinking. The simple and controlled treatment of CALB-octyl with glutaraldehyde has proved to be an effective way to obtain a biocatalyst with improved activity and stability under different conditions.  相似文献   

18.
A freeze-dried whole-cell biocatalyst was prepared from Pseudomonas fluorescens and applied for the first time to regioselective synthesis of 1-β-d-arabinofuranosylcytosine monoester in nonaqueous media. The catalytic performances of the bacterial cells were significantly enhanced by cultivation with a mixed carbon sources containing yeast extract and additional lipid-related substrates, especially the supplement of soybean oil. Cultivation of the cells supplemented with glucose, however, resulted in both low biomass and catalytic activities in the acylation. Taking into account the yield and 5′-regioselectivity of the cell-mediated reaction, yeast extract appeared to be the most suitable for cell cultivation, of all the tested nitrogen sources. Due to the fact that the nutrient concentrations and culture time are also crucial factors affecting the corresponding cell-catalyzed reaction, their effect on the catalytic performance of the cells were also investigated. The best soybean oil concentration, yeast extract concentration and culture time were 0.5% (w/v), 0.1% (w/v) and 48 h, respectively, under which the yield and 5′-regioselectivity of the reaction catalyzed by the cell biocatalyst reached 75.4% and 96.8%, respectively. Our results demonstrated that P. fluorescens whole cell was a green and economic alternative to enzymes for regioselective acylation of ara-C in non-aqueous media.  相似文献   

19.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

20.
Sunflower oil modification for production of semisolid fats was carried out via acidolysis using palmitic and stearic acids (P + St), hexane and a developed biocatalyst from Rhizomucor miehei lipases. Its kinetic behavior was studied by employing three mathematical models proposed in the literature. Furthermore, a new model was proposed to describe not only the variation of triacylglycerols (TAG), diacylglycerols (DAG), and free fatty acids groups but also the acyl migration reaction occurrence. The effect of the reaction temperature on the kinetic and equilibrium parameters, as well as TAG and reaction intermediates profiles was analyzed. Increasing reaction temperature generated major changes in the overall composition of acylglycerols and gave rise to the highest composition of P + St in the obtained structured lipids (58%, 70 h, 60 °C). P + St incorporation was successfully adjusted by an empirical model (Model I) and a lumped parameter model (Model II) for all the studied reaction times, while the model based on a Ping Pong Bi Bi mechanism (Model III) was only able to describe the kinetics behavior (through the variation of reactant saturated fatty acids concentration) until 24 h. Experimental data were fit satisfactorily by the proposed model (Model IV), showing that the increment in the disaturated TAG formation achieved by the increment in temperature was principally related to the favored DAG formation from triunsaturated TAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号