首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
Thiazolidinediones (TZDs) are synthetic ligands of peroxisome proliferator-activated receptor-γ (PPARγ), a member of the nuclear receptor superfamily. TZDs are known to increase insulin sensitivity and also to have an antioxidative effect. In this study, we tested whether TZDs protect pancreatic β-cells from oxidative stress, and we investigated the mechanism involved in this process. To generate oxidative stress in pancreatic β-cells (INS-1 and βTC3) or isolated islets, glucose oxidase was added to the media. The extracellular and intracellular reactive oxygen species (ROS) were measured to directly determine the antioxidant effect of TZDs. The phosphorylation of JNK/MAPK after oxidative stress was detected by Western blot analysis, and glucose-stimulated insulin secretion and cell viability were also measured. TZDs significantly reduced the ROS levels that were increased by glucose oxidase, and they effectively prevented β-cell dysfunction. The antioxidative effect of TZDs was abolished in the presence of a PPARγ antagonist, GW9662. Real-time PCR was used to investigate the expression levels of antioxidant genes. The expression of catalase, an antioxidant enzyme, was increased by TZDs in pancreatic β-cells, and the knockdown of catalase significantly inhibited the antioxidant effect of TZDs. These results suggest that TZDs effectively protect pancreatic β-cells from oxidative stress, and this effect is dependent largely on PPARγ. In addition, the expression of catalase is increased by TZDs, and catalase, at least in part, mediates the antioxidant effect of TZDs in pancreatic β-cells.  相似文献   

2.
Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products.  相似文献   

3.
Thiazolidinedione (TZD) compounds targeting the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) demonstrate unique benefits for the treatment of insulin resistance and type II diabetes. TZDs include rosiglitazone, pioglitazone and rivoglitazone, with the latter being the most potent. The TZDs are only marginally selective for the therapeutic target PPARγ as they also activate PPARα and PPARδ homologues to varying degrees, causing off-target effects. While crystal structures for TZD compounds in complex with PPARγ are available, minimal structural information is available for TZDs bound to PPARα and PPARδ. This paucity of structural information has hampered the determination of precise structural mechanisms involved in TZD selectivity between PPARs. To help address these questions molecular dynamic simulations were performed of rosiglitazone, pioglitazone and rivoglitazone in complex with PPARα, PPARδ, and PPARγ in order to better understand the mechanisms of PPAR selectivity. The simulations revealed that TZD interactions with residues Tyr314 and Phe318 of PPARα and residues Phe291 and Thr253 of PPARδ as well as the omega loop, are key determinants of TZD receptor selectivity. Notably, in this study, we solve the first X-ray crystal structure of rivoglitazone bound to any PPAR. Rivoglitazone forms a unique hydrogen bond network with the residues of the PPARγ co-activator binding surface (known as AF2) and makes more extensive contacts with helix 3 and the β-sheet as compared to model TZD compounds such as rosiglitazone.  相似文献   

4.
5.
Type-2 diabetes (T2D) is a complex metabolic disease characterized by insulin resistance in the liver and peripheral tissues accompanied by a deficiency in pancreatic β-cells. Since their discovery, three subtypes of peroxisome proliferator activated receptors have been identified, namely PPARα, PPARγ and PPARβ/(δ). In this study, we were interested in designing novel PPARγ selective agonists and/or dual PPARα/γ agonists. Based on the typical topology of synthetic PPAR agonists, we focused our design approach on using 4,4-dimethyl-1,2,3,4-tetrahydroquinoline as a novel cyclic scaffold with oxime and acidic head group structural variations.  相似文献   

6.
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that exerts insulinotropic and growth and survival effects on pancreatic β-cells. Additionally, there is increasing evidence supporting an important role for GIP in the regulation of adipocyte metabolism. In the current study we examined the molecular mechanisms involved in the regulation of GIP receptor (GIPR) expression in 3T3-L1 cells. GIP acted synergistically with insulin to increase neutral lipid accumulation during progression of 3T3-L1 preadipocytes to the adipocyte phenotype. Both GIPR protein and mRNA expression increased during 3T3-L1 cell differentiation, and this increase was associated with upregulation of nuclear levels of sterol response element binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor γ (PPARγ), as well as acetylation of histones H3/H4. The PPARγ receptor agonists LY171883 and rosiglitazone increased GIPR expression in differentiated 3T3-L1 adipocytes, whereas the antagonist GW9662 ablated expression. Additionally, both PPARγ and acetylated histones H3/H4 were shown to bind to a region of the GIPR promoter containing the peroxisome proliferator response element (PPRE). Knockdown of PPARγ in differentiated 3T3-L1 adipocytes, using RNA interference, reduced GIPR expression, supporting a functional regulatory role. Taken together, these studies show that GIP and insulin act in a synergistic manner on 3T3-L1 cell development and that adipocyte GIPR expression is upregulated through a mechanism involving interactions between PPARγ and a GIPR promoter region containing an acetylated histone region.  相似文献   

7.
8.
The PPARγ nuclear receptor orchestrates fatty acid storage and glucose metabolism by coordinating the expression of genes involved in lipid uptake, adipogenesis and inflammation. It is a target for the insulin-sensitising thiazolidinediones (TZDs) which have been used to treat diabetes since the late nineties. Adverse secondary effects of TZDs have underpinned continued investigations into the molecular details governing PPARγ regulation and new therapeutic approaches which represent the focus of this article. Recent findings position Cdk5 as a lead conductor of PPARγ. Cdk5 regulates PPARγ directly, via phosphorylation, and may also inhibit it indirectly, via phosphorylation and activation of phospholipase D2 (PLD2) which generates the endogenous inhibitor cyclic phosphatidic acid (CPA). Whilst the multifunctional nature of Cdk5 precludes it from therapeutic targeting all is not lost as selective PPARγ modulators (SPPARMs) have shown promising preclinical and clinical results heralding a new generation of drugs to conduct a more refined PPARγ program.  相似文献   

9.
PPARγ is a member of the nuclear hormone receptor family and plays a key role in the regulation of glucose homeostasis. This Letter describes the discovery of a novel chemical class of diarylsulfonamide partial agonists that act as selective PPARγ modulators (SPPARγMs) and display a unique pharmacological profile compared to the thiazolidinedione (TZD) class of PPARγ full agonists. Herein we report the initial discovery of partial agonist 4 and the structure–activity relationship studies that led to the selection of clinical compound INT131 (3), a potent PPARγ partial agonist that displays robust glucose-lowering activity in rodent models of diabetes while exhibiting a reduced side-effects profile compared to marketed TZDs.  相似文献   

10.
11.
12.
13.
GPR40 (FFAR1 or FFA1) is a G protein-coupled receptor, primarily expressed in pancreatic islet β-cells and intestinal enteroendocrine cells. When activated by fatty acids, GPR40 elicits increased insulin secretion from islet β-cells only in the presence of elevated glucose levels. Towards this end, studies were undertaken towards discovering a novel GPR40 Agonist whose mode of action is via Positive Allosteric Modulation of the GPR40 receptor (AgoPAM). Efforts were made to identify a suitable GPR40 AgoPAM tool molecule to investigate mechanism of action and de-risk liver toxicity of GPR40 AgoPAMs due to reactive acyl-glucuronide (AG) metabolites.  相似文献   

14.
Currently approved thiazolidinediones (TZDs) are effective insulin-sensitizing drugs that may have efficacy for treatment of a variety of metabolic and inflammatory diseases, but their use is limited by side effects that are mediated through ectopic activation of the peroxisome proliferator-activated receptor γ (PPARγ). Emerging evidence suggests that the potent anti-diabetic efficacy of TZDs can be separated from the ability to serve as ligands for PPARγ. A novel TZD analog (MSDC-0602) with very low affinity for binding and activation of PPARγ was evaluated for its effects on insulin resistance in obese mice. MSDC-0602 treatment markedly improved several measures of multiorgan insulin sensitivity, adipose tissue inflammation, and hepatic metabolic derangements, including suppressing hepatic lipogenesis and gluconeogenesis. These beneficial effects were mediated at least in part via direct actions on hepatocytes and were preserved in hepatocytes from liver-specific PPARγ(-/-) mice, indicating that PPARγ was not required to suppress these pathways. In conclusion, the beneficial pharmacology exhibited by MSDC-0602 on insulin sensitivity suggests that PPARγ-sparing TZDs are effective for treatment of type 2 diabetes with reduced risk of PPARγ-mediated side effects.  相似文献   

15.
16.
17.
18.
One of the master regulators of adipogenesis and macrophage function is peroxisome proliferator-activated receptor-γ (PPARγ). Here, we report that a deficiency of β-arrestin-1 expression affects PPARγ-mediated expression of lipid metabolic genes and inflammatory genes. Further mechanistic studies revealed that β-arrestin-1 interacts with PPARγ. β-Arrestin-1 suppressed the formation of a complex between PPARγ and 9-cis-retinoic acid receptor-α through its direct interaction with PPARγ. The interaction of β-arrestin-1 with PPARγ repressed PPARγ/9-cis-retinoic acid receptor-α function but promoted PPARγ/nuclear receptor corepressor function in PPARγ-mediated adipogenesis and inflammatory gene expression. Consistent with these results, a deficiency of β-arrestin-1 binding to PPARγ abolished its suppression of PPARγ-dependent adipogenesis and inflammatory responses. These results indicate that the regulation of PPARγ by β-arrestin-1 is critical. Furthermore, in vivo expression of β-arrestin-1 (but not the binding-deficient mutant) significantly repressed adipogenesis, macrophage infiltration, and diet-induced obesity and improved glucose tolerance and systemic insulin sensitivity. Therefore, our findings not only reveal a molecular mechanism for the modulation of obesity by β-arrestin-1 but also suggest a potential tactical approach against obesity and its associated metabolic disorders.  相似文献   

19.
Activation of a number of class A G protein-coupled receptors (GPCRs) is thought to involve two molecular switches, a rotamer toggle switch within the transmembrane domain and an ionic lock at the cytoplasmic surface of the receptor; however, the mechanism by which agonist binding changes these molecular interactions is not understood. Importantly, 80% of GPCRs including free fatty acid receptor 1 (FFAR1) lack the complement of amino acid residues implicated in either or both of these two switches; the mechanism of activation of these GPCRs is therefore less clear. By homology modeling, we identified two Glu residues (Glu-145 and Glu-172) in the second extracellular loop of FFAR1 that form putative interactions individually with two transmembrane Arg residues (Arg-183(5.39) and Arg-258(7.35)) to create two ionic locks. Molecular dynamics simulations showed that binding of agonists to FFAR1 leads to breakage of these Glu-Arg interactions. In mutagenesis experiments, breakage of these two putative interactions by substituting Ala for Glu-145 and Glu-172 caused constitutive receptor activation. Our results therefore reveal a molecular switch for receptor activation present on the extracellular surface of FFAR1 that is broken by agonist binding. Similar ionic locks between the transmembrane domains and the extracellular loops may constitute a mechanism common to other class A GPCRs also.G protein-coupled receptors (GPCRs)3 are important components of signal transduction machineries that regulate many physiological processes. They are also important as targets for therapeutic agents; a large percentage of drugs in the marketplace are GPCR ligands or modulators. Knowledge of structure-function relationships of GPCRs has been gained through many pharmacological, biochemical, and biophysical studies, and has been used extensively to enhance the discovery of GPCR ligands that have been developed into therapeutically useful agents (13). Knowledge of the molecular details of ligand-receptor interaction and of the mechanism of receptor activation will also likely improve efforts to identify agonists with better potency and efficacy. Tan et al. (3) have recently reported their design of agonists with higher potency and efficacy for the trace amine receptor 1 based on the rotamer toggle switch model of receptor activation that is thought to operate in a number of class A GPCRs. The rotamer toggle switch typically involves the aromatic residues Trp and Phe within transmembrane helix 6 (TMH6) of GPCRs. During agonist-mediated receptor activation or in constitutively active receptors, the dihedral angle on the side chain of these residues is predicted to be rotated compared with the inactive state and thereby triggers a movement of TMH6 away from TMH3 (e.g. Ref. 4). It is also thought that an ionic lock between an Arg residue in TMH3 and a Glu in TMH6 near the cytoplasmic surface of some GPCRs holds the receptor in the inactive conformation and that receptor activation is accompanied by breakage of the ionic bond when agonist binds; the ionic lock may also be broken by receptor mutation (e.g. Ref. 5). Although these models of receptor activation have been proposed for a number of class A GPCRs, it is not certain how generally this hypothesis can be applied across all members of this GPCR class. From the alignment of 372 sequences of human GPCRs, we noted that about 80% of GPCRs do not have the putative residues that play a role in either the rotamer toggle switch, the ionic lock, or both. For these receptors, the interaction responsible for regulating interconversion between inactive and active receptor conformations therefore remains unknown.The free fatty acid receptor 1 (FFAR1) is a Gq-coupled, class A GPCR-activated endogenously by free fatty acids, with a preference for medium-to-long chain fatty acids (C8–12) (reviewed in Ref. 6). The receptor has been suggested to be a potential target for treatment of type 2 diabetes, as offered by the action of agonists to potentiate glucose-stimulated insulin release (reviewed in Refs. 7, 8). Several groups, including ours, have reported the discovery of novel small molecule ligands for FFAR1 (913). Most of these compounds were identified by high-throughput screening followed by chemical optimization (1012). Our group has delineated the ligand-binding pocket of FFAR1 (14, 15) and used the information as a rational approach to ligand discovery by means of virtual screening (13). The mechanism of FFAR1 activation; however, remains unknown especially because this receptor does not contain either the rotamer toggle switch or the ionic lock between TMHs 3 and 6.We have previously identified nine residues in the ligand-binding pocket of FFAR1 that are important for ligand recognition and/or receptor activation (14). In particular, two Arg residues (Arg-183(5.39)4 and Arg-258(7.35)) and an Asn residue (Asn-244(6.55)) in the TMHs coordinate the carboxylate head group of the naturally occurring agonist linoleate and the synthetic agonist GW9508. In the present study, by a collaborative effort using computational modeling and receptor mutagenesis, we report the identification of Glu-172 in the second extracellular loop (ECL2) of FFAR1 that may function together with Arg-183(5.39) and Arg-258(7.35) as locks to control activation of the receptor. Our results suggest that these ionic locks at the extracellular surface hold the receptor in an inactive state. Agonists, through interaction with the arginine residues, may break the arginine-glutamate interactions thereby allowing the receptor to adopt an active conformation. Therefore, our results have provided insights into the mechanism of activation of class A GPCRs that function in a manner not explicable by the more well-studied models.  相似文献   

20.
Lin S  Han Y  Shi Y  Rong H  Zheng S  Jin S  Lin SY  Lin SC  Li Y 《Cell research》2012,22(4):746-756
Peroxisome proliferator-activated receptor gamma (PPARγ) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPARγ agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPARγ target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPARγ ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPARγ ligands in the treatment of insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号