首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the stem bark of Platycelphium voënse (Leguminosae) four new isoflavanones were isolated and characterized as (S)-5,7-dihydroxy-2′,4′-dimethoxy-3′-(3″-methylbut-2″-enyl)-isoflavanone (trivial name platyisoflavanone A), (±)-5,7,2′-trihydroxy-4′-methoxy-3′-(3″-methylbut-2″-enyl)-isoflavanone (platyisoflavanone B), 5,7-dihydroxy-4′-methoxy-2″-(2?-hydroxyisopropyl)-dihydrofurano-[4″,5″:3′,2′]-isoflavanone (platyisoflavanone C) and 5,7,2′,3″-tetrahydroxy-2″,2″-dimethyldihydropyrano-[5″,6″:3′,4′]-isoflavanone (platyisoflavanone D). In addition, the known isoflavanones, sophoraisoflavanone A and glyasperin F; the isoflavone, formononetin; two flavones, kumatakenin and isokaempferide; as well as two triterpenes, betulin and β-amyrin were identified. The structures were elucidated on the basis of spectroscopic evidence. Platyisoflavanone A showed antibacterial activity against Mycobacterium tuberculosis in the microplate alamar blue assay (MABA) with MIC = 23.7 μM, but also showed cytotoxicity (IC50 = 21.1 μM) in the vero cell test.  相似文献   

2.
A series of 2′,3′-dideoxy-2′,2′-difluoro-4′-azanucleosides of both pyrimidine and purine nucleobases were synthesized in an efficient manner starting from commercially available L-pyroglutamic acid via glycosylation of difluorinated pyrrolidine derivative 15. Several 4′-azanucleosides were prepared as a separable mixture of α- and β-anomers. The 6-chloropurine analogue was obtained as a mixture of N7 and N9 regioisomers and their structures were identified based on NOESY and HMBC spectral data. Among the 4′-azanucleosides tested as HIV-1 inhibitors in primary human lymphocytes, four compounds showed modest activity and the 5-fluorouracil analogue (18d) was found to be the most active compound (EC50 = 36.9 μM) in this series. None of the compounds synthesized in this study demonstrated anti-HCV activity.  相似文献   

3.
Two new lignans, named (+)-(7′S, 7″S, 8′R, 8″R)-4, 4′, 4″-trihydroxy-3, 5′, 3″-trimethoxy-7-oxo-8-ene [8-3′, 7′-O-9″, 8′-8″, 9′-O-7″] lignoid (1) and (1S)-4-Hydroxy-3-[2-(4-hydroxy-3-methoxy-phenyl)-1-hydroxymethyl-2-oxo-ethyl]-5-methoxy-benzaldehyde (2), along with five known (37) ones, have been isolated from the 95% ethanol extract of the seeds of Herpetospermum caudigerum Wall. The structures of the new compounds, including the absolute configurations, were elucidated by spectroscopic and CD analysis. Compounds 1, 2, and 7 displayed inhibitory activities on HBsAg secretion with IC50 values of 20.5, 0.34, and 4.89 μM, while 1, 2, and 7 displayed inhibitory activities on HBeAg secretion with IC50 values of 3.54, 4.83 × 10−4, and 8.02 μM, and cytotoxicity on HepG 2.2.15 cells with CC50 values of 12.7, 2.96 × 105, and 11.4 μM, respectively.  相似文献   

4.
Envelope glycoprotein Erns of classical swine fever virus (CSFV) has been shown to contain RNase activity and is involved in virus infection. Two short regions of amino acids in the sequence of Erns are responsible for RNase activity. In both regions, histidine residues appear to be essential for catalysis. They were replaced by lysine residues to inactivate the RNase activity. The mutated sequence of Erns was inserted into the p10 locus of a baculovirus vector and expressed in insect cells. Compared to intact Erns, the mutated proteins had lost their RNase activity. The mutated proteins reacted with Erns-specific neutralizing monoclonal and polyclonal antibodies and were still able to inhibit infection of swine kidney cells (SK6) with CSFV, but at a concentration higher than that measured for intact Erns. This result indicated that the conformation of the mutated proteins was not severely affected by the inactivation. To study the effect of these mutations on virus infection and replication, a CSFV mutant with an inactivated Erns (FLc13) was generated with an infectious DNA copy of CSFV strain C. The mutant virus showed the same growth kinetics as the parent virus in cell culture. However, in contrast to the parent virus, the RNase-negative virus induced a cytopathic effect in swine kidney cells. This effect could be neutralized by rescue of the inactivated Erns gene and by neutralizing polyclonal antibodies directed against Erns, indicating that this effect was an inherent property of the RNase-negative virus. Analyses of cellular DNA of swine kidney cells showed that the RNase-negative CSFV induced apoptosis. We conclude that the RNase activity of envelope protein Erns plays an important role in the replication of pestiviruses and speculate that this RNase activity might be responsible for the persistence of these viruses in their natural host.Classical swine fever virus (CSFV), bovine viral diarrhea virus (BVDV), and border disease virus belong to the genus Pestivirus within the family Flaviviridae (10). The viruses are structurally, antigenically, and genetically closely related. BVDV and border disease virus can infect ruminants and pigs. CSFV infections are restricted to pigs (6). Pestiviruses are small, enveloped, positive-stranded RNA viruses (23). The genome of pestiviruses varies in length from 12.5 to 16.5 kb (1, 2, 7, 17, 19, 25, 26, 28, 32) and contains a single large open reading frame (ORF) (1, 7, 8, 17, 26). The ORF is translated into a polyprotein which is processed into mature proteins by viral and host cell proteases (30). The envelope of the pestivirus virion contains three glycoproteins, Erns, E1, and E2 (35). Animals infected with pestiviruses raise antibodies against at least two viral glycoproteins, namely, Erns and E2 (16, 34, 42). Inhibition studies with E2 and Erns produced in insect cells showed that both envelope proteins are indispensable for viral attachment and entry of pestiviruses into susceptible cells (13). In the virion, Erns is present as a homodimer with a molecular mass of about 100 kDa (35). Erns lacks a membrane anchor, and association with the envelope is accomplished by an as-yet-unknown mechanism. Significant amounts of Erns are secreted from infected cells (30). A unique feature is that Erns, besides being an envelope protein, possesses RNase activity (12, 31). Erns belongs to the family of extracellular RNases consisting of several fungal (e.g., RNase T2 and Rh) and plant (e.g., S glycoproteins of Nicotiana alata) RNases (12, 31). These RNases contain two homologous regions of 8 amino acids each which are spaced by 38 (Erns) nonhomologous amino acids and which form the RNase active site. Histidine residues in both regions appear to be essential for RNase catalysis (15).The role of this RNase activity in the replication of pestiviruses or in the pathogenesis of a pestivirus infection is an interesting issue that, as yet, has not been studied. The availability of a recently generated infectious DNA copy of CSFV strain C (24) has given us the opportunity to study the effect of defined mutations in a pestivirus genome. In this paper, we report the inactivation of the RNase activity of Erns by mutagenesis. To characterize the mutated proteins, we produced large amounts of them in insect cells (12). By reverse genetics, we generated an RNase-negative CSFV recombinant. The effect of the inactivation of the RNase activity of Erns on the replication of CSFV in vitro was studied.  相似文献   

5.
Despite the prepdominat agent causing severe entero-pathogenic diarrhea in swine, there are no effective therapeutical treatment of porcine epidemic diarrhea virus (PEDV). In this study, we evaluated the antiviral activity of five phlorotannins isolated from Ecklonia cava (E. cava) against PEDV. In vitro antiviral activity was tested using two different assay strategies: (1) blockage of the binding of virus to cells (simultaneous-treatment assay) and (2) inhibition of viral replication (post-treatment assay). In simultaneous-treatment assay, compounds 25 except compound 1 exhibited antiviral activities of a 50% inhibitory concentration (IC50) with the ranging from 10.8 ± 1.4 to 22.5 ± 2.2 μM against PEDV. Compounds 15 were completely blocked binding of viral spike protein to sialic acids at less than 36.6 μM concentrations by hemagglutination inhibition. Moreover, compounds 4 and 5 of five phlorotannins inhibited viral replication with IC50 values of 12.2 ± 2.8 and 14.6 ± 1.3 μM in the post-treatment assay, respectively. During virus replication steps, compounds 4 and 5 exhibited stronger inhibition of viral RNA and viral protein synthesis in late stages (18 and 24 h) than in early stages (6 and 12 h). Interestingly, compounds 4 and 5 inhibited both viral entry by hemagglutination inhibition and viral replication by inhibition of viral RNA and viral protein synthesis, but not viral protease. These results suggest that compounds isolated from E. cava have strong antiviral activity against PEDV, inhibiting viral entry and/or viral replication, and may be developed into natural therapeutic drugs against coronavirus infection.  相似文献   

6.
Two new 3-hydroxyisoflavanones, (S)-3,4′,5-trihydroxy-2′,7-dimethoxy-3′-prenylisoflavanone (trivial name kenusanone F 7-methyl ether) and (S)-3,5-dihydroxy-2′,7-dimethoxy-2″,2″-dimethylpyrano[5″,6″:3′,4′]isoflavanone (trivial name sophoronol-7-methyl ether) along with two known compounds (dalbergin and formononetin) were isolated from the stem bark of Dalbergia melanoxylon. The structures were elucidated using spectroscopic techniques. Kenusanone F 7-methyl ether showed activity against Mycobacterium tuberculosis, whereas both of the new compounds were inactive against the malaria parasite Plasmodium falciparum at 10 μg/ml. Docking studies showed that the new compounds kenusanone F 7-methyl ether and sophoronol-7-methyl ether have high affinity for the M. tuberculosis drug target INHA.  相似文献   

7.
8.
Classical swine fever virus (CSFV) is an important pathogen in the swine industry. Virion attachment is mediated by envelope proteins Erns and E2, and E2 is indispensable. Using a pull-down assay with soluble E2 as the bait, we demonstrated that ADAM17, a disintegrin and metalloproteinase 17, is essential for CSFV entry. Loss of ADAM17 in a permissive cell line eliminated E2 binding and viral entry, but compensation with pig ADAM17 cDNA completely rescued these phenotypes. Similarly, ADAM17 silencing in primary porcine fibroblasts significantly impaired virus infection. In addition, human and mouse ADAM17, which is highly homologous to pig ADAM17, also mediated CSFV entry. The metalloproteinase domain of ADAM17 bound directly to E2 protein in a zinc-dependent manner. A surface exposed region within this domain was mapped and shown to be critical for CSFV entry. These findings clearly demonstrate that ADAM17 serves as an essential attachment factor for CSFV.  相似文献   

9.
Bioassay-guided fractionation of an EtOAc-soluble extract of Acanthopanax senticosus (Rupr. & Maxim.) Harms yielded two new diphenyl ethers, 3-[3′-methoxy-4′-(4″-formyl-2″,6″-dimethoxy-phenoxy)-phenyl]-propenal (1) and 3-[3′,5′-dihydroxy-4′-(4″-hydroxymethyl-3″,5″-dimethoxy-phenoxy)-phenyl]-propenal (2), along with eight other known compounds (310). The structures of these new ethers were elucidated with spectroscopic and physico-chemical analyses. All of the isolates were evaluated for their in vitro inhibitory activity against PTP1B, VHR and PP1. The new compounds (1 and 2) inhibited PTP1B with IC50 values ranging from 9.2 ± 1.4 to 12.6 ± 1.2 μM.  相似文献   

10.
Reaction of β-maltotriose hendecaacetate with phosphorus pentachloride gave 2′,2″,3,3′,3″,4″,6,6′,6″,-nona-O-acetyl-(2)-O-trichloroacetyl-β-maltotriosyl chloride (2) which was isomerized into the corresponding α anomer (8). Selective ammonolysis of 2 and 8 afforded the 2-hydroxy derivatives 3 and 9, respectively; 3 was isomerized into the α anomer 9. Methanolysis of 2 and 3 in the presence of pyridine and silver nitrate and subsequent deacetylation gave methyl α-maltotrioside. Likewise, methanolysis and O-deacetylation of 9 gave methyl β-maltotrioside which was identical with the compound prepared by the Koenigs—Knorr reaction of 2,2′,2″,3,3′,3″,4″,6,6′,6″-deca-O-acetyl-α-maltotriosyl bromide (12) with methanol followed by O-deacetylation. Several substituted phenyl β-glycosides of maltotriose were also obtained by condensation of phenols with 12 in an alkaline medium. Alkaline degradation of the o-chlorophenyl β-glycoside decaacetate readily gave a high yield of 1,6-anhydro-β-maltotriose.  相似文献   

11.
Tephrosia vogelii Hook. f. (Leguminosae) is being promoted as a pest control and soil enrichment agent for poorly-resourced small-scale farmers in southern and eastern Africa. This study examined plants being cultivated by farmers and found two chemotypes. Chemotype 1 (C1) contained rotenoids, including deguelin, rotenone, sarcolobine, tephrosin and α-toxicarol, required for pest control efficacy. Rotenoids were absent from chemotype 2 (C2), which was characterised by prenylated flavanones, including the previously unrecorded examples (2S)-5,7-dimethoxy-8-(3-hydroxy-3-methylbut-1Z-enyl)flavanone, (2S)-5,7-dimethoxy-8-(3-methylbut-1,3-dienyl)flavanone, (2S)-4′-hydroxy-5-methoxy-6″,6″-dimethylpyrano[2″,3″:7,8]flavanone, (2S)-5-methoxy-6″,6″-dimethyl-4″,5″-dihydrocyclopropa[4″,5″]furano[2″,3″:7,8]flavanone, (2S)-7-hydroxy-5-methoxy-8-prenylflavanone, and (2R,3R)-3-hydroxy-5-methoxy-6″,6″-dimethylpyrano[2″,3″:7,8]flavanone. The known compounds (2S)-5-methoxy-6″,6″-dimethylpyrano[2″,3″:7,8]flavanone (obovatin 5-methyl ether) and 5,7-dimethoxy-8-(3-hydroxy-3-methylbut-1Z-enyl)flavone (Z-tephrostachin) were also found in C2. This chemotype, although designated Tephrosia candida DC. in collections originating from the World Agroforestry Centre (ICRAF), was confirmed to be T. vogelii on the basis of morphological comparison with verified herbarium specimens and DNA sequence analysis. Sampling from 13 locations in Malawi where farmers cultivate Tephrosia species for insecticidal use indicated that almost 1 in 4 plants were T. vogelii C2, and so were unsuitable for this application. Leaf material sourced from a herbarium specimen of T. candida contained most of the flavanones found in T. vogelii C2, but no rotenoids. However, the profile of flavonol glycosides was different to that of T. vogelii C1 and C2, with 6-hydroxy-kaempferol 6-methyl ether as the predominant aglycone rather than kaempferol and quercetin. The structures of four unrecorded flavonol glycosides present in T. candida were determined using cryoprobe NMR spectroscopy and MS as the 3-O-α-rhamnopyranosyl(1  6)-β-galactopyranoside-7-O-α-rhamnopyranoside, 3-O-α-rhamnopyranosyl(1  2)[α-rhamnopyranosyl(1  6)]-β-galactopyranoside, 3-O-α-rhamnopyranosyl(1  2)[α-rhamnopyranosyl(1  6)]-β-galactopyranoside-7-O-α-rhamnopyranoside, and 3-O-α-rhamnopyranosyl(1  2)[(3-O-E-feruloyl)-α-rhamnopyranosyl(1  6)]-β-galactopyranosides of 6-hydroxykaempferol 6-methyl ether. Tentative structures for a further 37 flavonol glycosides of T. candida were assigned by LC–MS/MS. The correct chemotype of T. vogelii (i.e. C1) needs to be promoted for use by farmers in pest control applications.  相似文献   

12.
Viral infections remain a major threat to humans and animals and there is a crucial need for new antiviral agents especially with the development of resistant viruses. Several Limonium genus members (Plumbaginacea) have been widely used in traditional medicine for the treatment of infections. In this study, we investigated the antiviral activities of different fractions after successive extraction (hexane, dichloromethane, ethanol and methanol) of the halophyte Limonium densiflorum against H1N1 influenza and HSV-1 herpes viruses. In addition, TLC phytochemicals of the shoot extracts were analyzed. All extracts were tested for their cytotoxicity using a fluorometric resazurin assay. The antiviral activity of extracts was tested using four modes of action: virucidal test, pretreatment of cells with samples before infection, attachment assay and plaque reduction test. A good antiviral activity was found with ethanol and methanol extracts. They were most potent in HSV-1 inhibition than H1N1 influenza virus. The most potent inhibition was observed with ethanol extract, and it exhibited high levels of virucidal activity against HSV-1 (IC50 = 6 μg/mL). It inhibits the replication of the virus by 75% when added after penetration of the virus, and by 100% when added during the viral attachment. It protects MDCK cells against influenza virus by abolishing virus to entry into the host cell (IC50 = 55 μg/mL). After attachment of influenza virus, the ethanol extract displayed an appreciable inhibition of virus replication (IC50 = 193 μg/mL). Methanol extract showed a moderate antiviral capacity against both viruses. While dichloromethane has excellent antiherpes potential, results were inappropriate because it was toxic to Vero cells, hexane extract has no effect. TLC analysis of these extracts showed that flavonoids and saponins were the major classes of natural products found in the shoot extracts that may be responsible for these antiviral activities.  相似文献   

13.
Based on flexible construction and broad bioactivity of ferulic acid, a series of novel α,β-unsaturated amide derivatives bearing α-aminophosphonate moiety were designed, synthesized and systematically evaluated for their antiviral activity. Bioassay results indicated that some compounds exhibited good antiviral activities against cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV) in vivo. Especially, compound g18 showed excellent curative and protective activities against CMV, with half-maximal effective concentration (EC50) values of 284.67 μg/mL and 216.30 μg/mL, which were obviously superior to that of Ningnanmycin (352.08 μg/mL and 262.53 μg/mL). Preliminary structure-activity relationships (SARs) analysis revealed that the introduction of electron-withdrawing group at the 2-position or 4-position of the aromatic ring is favorable for antiviral activity. Present work provides a promising template for development of potential inhibitor of plant virus.  相似文献   

14.
The aim of this study was to evaluate the antiviral potential of methanolic extract (ME) of Achyranthes aspera, an Indian folk medicine and one of its pure compound oleanolic acid (OA) against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). The ME possessed weak anti-herpes virus activity (EC50 64.4 μg/ml for HSV-1 and 72.8 μg/ml for HSV-2). While OA exhibited potent antiherpesvirus activity against both HSV-1 (EC50 6.8 μg/ml) and HSV-2 (EC50 7.8 μg/ml). The time response study revealed that the antiviral activity of ME and OA is highest at 2–6 h post infection. The infected and drug-treated peritoneal macrophage at specific time showed increased level of pro-inflammatory cytokines (IL6 and IL12). Further, the PCR of DNA from infected cultures treated with ME and OA, at various time intervals, failed to show amplification at 48–72 h, similar to that of HSV infected cells treated with acyclovir, indicating that the ME and OA probably inhibit the early stage of multiplication (post infection of 2–6 h). Thus, our study demonstrated that ME and OA have good anti-HSV activity, with SI values of 12, suggesting the potential use of this plant.  相似文献   

15.
Recently, many natural products, especially some plant-derived polyphenols have been found to exert antiviral effects against influenza virus and show inhibitory activities on neuraminidases (NAs). In our research, we took caffeic acid which contained two phenolic hydroxyl groups as the basic fragment to build a small compound library with various structures. The enzyme inhibition result indicated that some compounds exhibited moderate activities against NA and compound 15d was the best with IC50 = 7.2 μM and 8.5 μM against N2 and N1 NAs, respectively. The 3,4-dihydroxyphenyl group from caffeic acid was important for the activity according to the docking analysis. Besides, compound 15d was found to be a non-competitive inhibitor with Ki = 11.5 ± 0.25 μM by the kinetic study and also presented anti-influenza virus activity in chicken embryo fibroblast cells. It seemed promising to discover more potent NA inhibitors from caffeic acid derivatives to cope with influenza virus.  相似文献   

16.
《Process Biochemistry》2004,39(11):1599-1605
Fusarium oxysporum F3 produced N-acetyl-β-d-glucosaminidase when grown on wheat bran and chitin as carbon sources in solid-state fermentation. The initial moisture content and pH of growth medium were 65% and 6.0, respectively, and the enzyme yield 23.6 U g−1 carbon source. Two isozymes of N-acetyl-β-d-glucosaminidase, called N-acetyl-β-d-glucosaminidases I and II, were isolated from the culture filtrate of F. oxysporum F3. The filtrate was subjected to ammonium sulphate fractionation followed by anion exchange, gel filtration, hydrophobic interaction and cation exchange chromatography. The optimum pH of isozymes I and II was 5.0 and 6.0, respectively, whereas maximum activity of both isozymes was obtained at 40 °C. The Km of isozymes I and II was 49.6 and 48.6 μM and the Vmax 1.24 and 0.26 μmol mg−1 min−1, respectively, on p-nitrophenyl N-acetyl-β-d-glucosaminide as substrate. The molecular mass of isozymes I and II was calculated to be 67 kDa by SDS–PAGE.  相似文献   

17.
New oxazolinyl derivatives of [17(20)E]-pregna-5,17(20)-diene: 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,5′-dihydro-1′,3′-oxazole 1 and 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,4′-dimethyl-4′,5′-dihydro-1′,3′-oxazole 2 were evaluated as potential CYP17A1 inhibitors in comparison with 17-(pyridin-3-yl)androsta-5,16-dien-3β-ol 3 (abiraterone). Differential absorption spectra of human recombinant CYP17A1 in the presence of compound 1 (λmax = 422 nm, λmin = 386 nm) and compound 2 (λmax = 416 nm) indicated significant differences in enzyme/inhibitors complexes. CYP17A1 activity was measured using electrochemical methods. Inhibitory activity of compound 1 was comparable with abiraterone 3 (IC50 = 0.9 ± 0.1 μM, and IC50 = 1.3 ± 0.1 μM, for compounds 1 and 3, respectively), while compound 2 was found to be weaker inhibitor (IC50 = 13 ± 1 μM). Docking of aforementioned compounds to CYP17A1 revealed that steroid fragments of compound 1 and abiraterone 3 occupied close positions; oxazoline cycle of compound 1 was coordinated with heme iron similarly to pyridine cycle of abiraterone 3. Configuration of substituents at 17(20) double bond in preferred docked position corresponded to Z-isomers of compounds 1 and 2. Presence of 4′-substituents in oxazoline ring of compound 2 prevents coordination of oxazoline nitrogen with heme iron and worsens its docking score in comparison with compound 1. These data indicate that oxazolinyl derivative of [17(20)E]-pregna-5,17(20)-diene 1 (rather than 4′,4′-dimethyl derivative 2) may be considered as potential CYP17A1 inhibitor and template for development of new compounds affecting growth and proliferation of prostate cancer cells.  相似文献   

18.
Classical swine fever virus (CSFV) Erns is an envelope glycoprotein possessing RNase activity. The Erns-based enzyme-linked immunosorbent assay (ELISA) has been considered a discriminating diagnostic test for differentiating infected from vaccinated animals. The purpose of this study was to produce a specific monoclonal antibody (MAb) to Erns for further developing an indirect sandwich ELISA. The MAb CW813 was shown to specifically recognize both the monomer and dimer forms of Pichia pastoris yeast-expressed Erns (yErns). The antigenic site recognized by MAb CW813 was mapped to the region of amino acid residues 101–160 of Erns where it was neither a neutralizing epitope nor essential to RNase activity. Furthermore, MAb CW813 was utilized as a capture antibody to develop a yErns-based indirect sandwich ELISA for detecting swine antibody to Erns. The assay demonstrated a high sensitivity and specificity that may provide an alternative method for developing a diagnostic kit with easy manipulation and low cost.  相似文献   

19.
(−)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives, which can be widely used as a natural antioxidant in both lipid containing food and cosmetic applications, were prepared by lipase catalyzed acylation of EGCG with vinyl acetate. Response surface methodology (RSM) and 5-level-4-factor central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time (6–10 h), temperature (30–50 °C), enzyme amount (1.5–2.5% (w/w) of substrate), and substrate molar ratio of EGCG to vinyl acetate (0.5–1.5) on conversion of EGCG. By using multiple regression analysis, the experimental data were fitted to a second order polynomial model. The most suitable combination of variables was 40 °C, 2.12%, 10 h and 1.13 for the reaction temperature, the enzyme amount, the reaction time, and EGCG/vinyl acetate mole ratio, respectively. At these optimal conditions, the conversion yield reached 87.37%. The presence of mono-, di- and tri-acetylated derivatives in acetylated EGCG was confirmed by LC–MS-MS and identified as 5″-O-acetyl-EGCG, 3″, 5″-2-O-acetyl-EGCG and 5′, 3″, 5″-3-O-acetyl-EGCG by NMR.  相似文献   

20.
The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2 +/Mn2 + homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2 + concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2 + confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2 +. The use of Pmr1p mutants either defective for Ca2 + or Mn2 + transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2 + requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2 + inside the Golgi lumen when Pmr1p exclusively transports Ca2 +. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2 + sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2 +/Ca2 + transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号