首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein tyrosine phosphatases (PTPs) play key roles in regulating tyrosine phosphorylation levels in cells. Since the discovery of PTP1B as a major drug target for diabetes and obesity, PTPs have emerged as a new and promising class of signaling targets for drug development in a variety of therapeutic areas. The routine use of generic substrate 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) in our hands led to the discovery of very similar and often not very selective molecules. Therefore, to increase the chances to discover novel chemical scaffolds, a side-by-side comparison between the DiFMUP assay and a chip-based mobility shift assay with a specific phosphopeptide was performed, on 1 PTP, using a focused set of compounds. Assay robustness and sensitivity were comparable for both the DiFMUP and mobility shift assays. The off-chip mobility shift assay required a longer development time because of identification, synthesis, and characterization of a specific peptide, and its cost per point was higher. However, although most potent scaffolds found with the DiFMUP assay were confirmed in the mobility shift format, the off-chip mobility shift assay led to the identification of previously unidentified chemical scaffolds with improved druglike properties.  相似文献   

3.
In recent years, biopharmaceutical drug products have become hugely successful. However, they are often complex molecules that are expensive to manufacture. Commercial needs for cost-effective therapies have therefore led to the development of novel protein scaffold technologies that are increasingly being used for biopharmaceutical drug discovery. Major new scaffolds include single-domain antibodies, small modular immunopharmaceuticals, tetranectins, AdNectins, A-domain proteins, lipocalins and ankyrin repeat proteins. These scaffolds offer low-cost alternatives to classical antibody therapeutic strategies and some have shown early clinical promise. Further progress in the field will permit the commercially successful development of sophisticated protein therapeutics against complex disease targets.  相似文献   

4.
Continuing investigations into protein-protein interactions have revealed their key role in regulating a wide range of cellular processes. Although efforts to modulate these interactions are more challenging and much less mature than work on conventional drug discovery pathways, significant progress has been made on several fronts. Highlights of recent advances involve peptide-based inhibitors, including sidechain and backbone cross-linked agents, and peptide scaffolds, as well as small-molecule inhibitors of protein-protein interactions, such as those containing terephthalate or bis-imidazole scaffolds.  相似文献   

5.
The development of new drugs with better pharmacological and safety properties mandates the optimization of several parameters. Today, potency is often used as the sole biochemical parameter to identify and select new molecules. Surprisingly, thermodynamics, which is at the core of any interaction, is rarely used in drug discovery, even though it has been suggested that the selection of scaffolds according to thermodynamic criteria may be a valuable strategy. This poor integration of thermodynamics in drug discovery might be due to difficulties in implementing calorimetry experiments despite recent technological progress in this area. In this report, the authors show that fluorescence-based thermal shift assays could be used as prescreening methods to identify compounds with different thermodynamic profiles. This approach allows a reduction in the number of compounds to be tested in calorimetry experiments, thus favoring greater integration of thermodynamics in drug discovery.  相似文献   

6.
F Zhu  XH Ma  C Qin  L Tao  X Liu  Z Shi  CL Zhang  CY Tan  YZ Chen  YY Jiang 《PloS one》2012,7(7):e39782
Due to extensive bioprospecting efforts of the past and technology factors, there have been questions about drug discovery prospect from untapped species. We analyzed recent trends of approved drugs derived from previously untapped species, which show no sign of untapped drug-productive species being near extinction and suggest high probability of deriving new drugs from new species in existing drug-productive species families and clusters. Case histories of recently approved drugs reveal useful strategies for deriving new drugs from the scaffolds and pharmacophores of the natural product leads of these untapped species. New technologies such as cryptic gene-cluster exploration may generate novel natural products with highly anticipated potential impact on drug discovery.  相似文献   

7.
Over the last two decades, N-acylhydrazone (NAH) has been proven to be a very versatile and promising motif in drug design and medicinal chemistry. Herein, we discuss the current and future challenges in the emergence of bioactive NAH-based scaffolds and to developing strategies to overcome the failures in drug discovery. The NAH-related approved drugs nitrofurazone, nitrofurantoin, carbazochrome, testosterone 17-enanthate 3-benzilic acid hydrazine, nifuroxazide, dantrolene, and azumolene are already used as therapeutics in various countries. PAC-1 is an NAH-based therapeutic agent that entered clinical trials in 2015. Another NAH-derived scaffold, LASSBio-294, is in preclinical trials. This review highlights the detailed comprehensive assessment and therapeutic landscape of bioactive NAH motif scaffolds in preclinical and clinical studies published to date and their promise and associated challenges in current and future drug discovery of NAH-based drugs that will progress to clinical use.  相似文献   

8.
The use of privileged scaffolds has proven beneficial for generating novel bioactive scaffolds in drug discovery program. Chromone is one such privileged scaffold that has been exploited for designing pharmacologically active analogs. The molecular hybridization technique combines the pharmacophoric features of two or more bioactive compounds to avail a better pharmacological activity in the resultant hybrid analogs. The current review summarizes the rationale and techniques involved in developing hybrid analogs of chromone, which show potential in fields of obesity, diabetes, cancer, Alzheimer's disease and microbial infections. Here the molecular hybrids of chromone with various pharmacologically active analogs or fragments (donepezil, tacrine, pyrimidines, azoles, furanchalcones, hydrazones, quinolines, etc.) are discussed with their structure-activity relationship against above-mentioned diseases. Detailed methodologies for the synthesis of corresponding hybrid analogs have also been described, with suitable synthetic schemes. The current review will shed light on various strategies utilized for the design of hybrid analogs in the field of drug discovery. The importance of hybrid analogs in various disease conditions is also illustrated.  相似文献   

9.
Molecular modeling of unbound tricyclic guanine scaffolds indicated that they can serve as effective bioisosteric replacements of xanthines. This notion was further confirmed by a combination of X-ray crystallography and SAR studies, indicating that tricyclic guanine DPP4 inhibitors mimic the binding mode of xanthine inhibitors, exemplified by linagliptin. Realization of the bioisosteric relationship between these scaffolds potentially will lead to a wider application of cyclic guanines as xanthine replacements in drug discovery programs for a variety of biological targets. Newly designed DPP4 inhibitors achieved sub-nanomolar potency range and demonstrated oral activity in vivo in mouse glucose tolerance test.  相似文献   

10.
The concept that natural products provide excellent leads for drug discovery, ultimately producing viable drugs, is a widely accepted view. Natural products embody inherent structural complexity and biological activity which often leads to new targets, pathways, or modes of action. The challenge lies in identifying quality natural product scaffolds that can ultimately result in a drug. Two recently approved drugs originating from unlikely natural product leads, ISP-1 and halichondrin B, were examples of such high quality scaffolds. In initial testing, both compounds displayed excellent in vitro potency, but more importantly were amenable to chemical optimization. This combination of unique biological activity plus the generation of structural activity relationships (SAR) may be early indicators of a high quality natural product scaffold worthy of additional studies.  相似文献   

11.
Using a polymer-bound selenenyl bromide resin, o-allyl and o-prenyl anilines were cycloaded to afford a series of solid-supported indoline and indole scaffolds. These scaffolds were then functionalized and cleaved via four distinct methods, namely traceless reduction, radical cyclization, radical rearrangement, and oxidative elimination, to afford 2-methyl indolines, polycyclic indolines, 2-methyl indoles, and 2-propenyl indolines, respectively. A number of small combinatorial libraries of compounds reminiscent of certain designed ligands of biological interest were constructed demonstrating the potential utility of the developed methodology to chemical biology studies and the drug discovery process.  相似文献   

12.
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase after exposure to pro-inflammatory stimuli and, therefore, represents a novel target for therapeutic treatment of acute and chronic inflammatory disorders. It is essential to identify mPGES-1 inhibitors with novel scaffolds as new leads or hits for the purpose of drug design and discovery that aim to develop the next-generation anti-inflammatory drugs. Herein we report novel mPGES-1 inhibitors identified through a combination of large-scale structure-based virtual screening, flexible docking, molecular dynamics simulations, binding free energy calculations, and in vitro assays on the actual inhibitory activity of the computationally selected compounds. The computational studies are based on our recently developed three-dimensional (3D) structural model of mPGES-1 in its open state. The combined computational and experimental studies have led to identification of new mPGES-1 inhibitors with new scaffolds. In particular, (Z)-5-benzylidene-2-iminothiazolidin-4-one is a promising novel scaffold for the further rational design and discovery of new mPGES-1 inhibitors. To our best knowledge, this is the first time a 3D structural model of the open state mPGES-1 is used in structure-based virtual screening of a large library of available compounds for the mPGES-1 inhibitor identification. The positive experimental results suggest that our recently modeled trimeric structure of mPGES-1 in its open state is ready for the structure-based drug design and discovery.  相似文献   

13.
14.
Pictet–Spenglerases provide a key role in the biosynthesis of many biologically active alkaloids. There is increasing use of these biocatalysts as an alternative to traditional organic synthetic methods as they provide stereoselective and regioselective control under mild conditions. Products from these enzymes also contain privileged drug scaffolds (such as tetrahydroisoquinoline or β-carboline moieties), so there is interest in the characterization and use of these enzymes as versatile biocatalysts to synthesize analogs of the corresponding natural products for drug discovery. This review discusses all known Pictet–Spenglerase enzymes and their applications as biocatalysts.  相似文献   

15.
Recent drug discovery programs targeting urokinase plasminogen activator (uPA) have resulted in nonpeptidic inhibitors consisting of amidine or guanidine functional groups attached to aromatic or heteroaromatic scaffolds. There is a general problem of poor oral bioavailability of these charged inhibitors. In this paper, we report the synthesis and evaluation of a series of naphthamide and naphthalene sulfonamides as uPA inhibitors containing non-basic groups as substitute for amidine or guanidine groups.  相似文献   

16.
A novel family of potent dual inhibitors of CK2 and the Pim kinases was discovered by modifying the scaffolds of tricyclic Pim inhibitors. Several analogs were active at single digit nanomolar IC(50) values against CK2 and the Pim isoforms Pim-1 and Pim-2. The molecules displayed antiproliferative activity in various cell phenotypes in the low micromolar and submicromolar range, providing an excellent starting point for further drug discovery optimization.  相似文献   

17.
Natural products continue to provide privileged scaffolds for drug discovery. However, challenges in supply and structure diversification can limit development. Here, we discuss recent (2017–2020) examples of synthetic biology approaches used to address challenges in supply and contribute to structure diversification of selected plant and bacterial natural products. Our examples include plant terpenoids, alkaloids, and lignans and bacterial polyketides, nonribosomal peptides, and ribosomally synthesized and posttranslationally modified peptides.  相似文献   

18.
G-protein-coupled receptors (GPCRs) represent the largest class of drug targets, accounting for more than 40% of marketed drugs; however, discovery efforts for many GPCRs have failed to provide viable drug candidates. Historically, drug discovery efforts have focused on developing ligands that act at the orthosteric site of the endogenous agonist. Recently, efforts have focused on functional assay paradigms and the discovery of ligands that act at allosteric sites to modulate receptor function in either a positive, negative, or neutral manner. Allosteric modulators have numerous advantages over orthosteric ligands, including high subtype selectivity; the ability to mimic physiological conditions; the lack of densensitization, downregulation, and internalization; and reduced side effects. Despite these virtues, challenging issues have now arisen for allosteric modulators of metabotropic glutamate receptors (mGluRs): shallow SAR, ligand-directed trafficking, and the identification of subtle "molecular switches" that modulate the modes of pharmacology. Here, we will discuss the impact of modest structural changes to multiple mGluR allosteric ligands scaffolds that unexpectedly modulate pharmacology and raise concerns over metabolism and the pharmacology of metabolites.  相似文献   

19.
Sulfur containing spiroheterocyclic oxindoles are promising privileged scaffolds in medicinal chemistry and drug discovery. Previously, we identified a new class of spirodihydrothiopyran-oxindoles with good in vitro antitumor activity against A549 lung cancer cell line. Herein, various spirooxindole-dihydrothiopyrans with diverse substitutions were synthesized and assayed to investigate the structure-activity relationships. Among the derivatives, compounds 4b, 4i, 4m, 4n and 4q displayed superior or comparable antitumor activity than nutlin-3. Molecular mechanism study revealed this scaffold displayed moderate MDM2 inhibitory activity, significantly induced cancer cell apoptosis and arrested cell cycle at G0/G1 phase, which represented a good lead compound for antitumor drug discovery.  相似文献   

20.
Antibiotic resistant bacterial infections are now a leading cause of global mortality. While drug resistance continues to spread, the clinical antibiotic pipeline has become bare. This discord has focused attention on developing new strategies for antimicrobial discovery. Natural macrocyclic peptide-based products have provided novel antibiotics and antibiotic scaffolds targeting several essential bacterial cell envelope processes, but discovery of such natural products remains a slow and inefficient process. Synthetic strategies employing peptide display technologies can quickly screen large libraries of macrocyclic sequences for specific target binding and general antibacterial potential providing alternative approaches for new antibiotic discovery. Here we review cell envelope processes that can be targeted with macrocyclic peptide therapeutics, outline important macrocyclic peptide display technologies, and discuss future strategies for both library design and screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号