首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-terminal sequence of the Smac/DIABLO protein is known to be involved in binding to the BIR3 domain of the anti-apoptotic proteins IAPs, antagonizing their action. Short peptides and peptide mimetics based on the first 4-residues of Smac/DIABLO have been demonstrated to re-sensitize resistant cancer cells, over-expressing IAPs, to apoptosis. Based on the well-defined structural basis for this interaction, a small focused library of C-terminal capped Smac/DIABLO-derived peptides was designed in silico using docking to the XIAP BIR3 domain. The top-ranked computational hits were conveniently synthesized employing Solid Phase Synthesis (SPS) on an alkane sulfonamide ‘Safety-Catch’ resin. This novel approach afforded the rapid synthesis of the target peptide library with high flexibility for the introduction of various C-terminal amide-capping groups. The library members were obtained in high yield (>65%) and purity (>85%), upon nucleophilic release from the activated resin by treatment with various amine nucleophiles. In vitro caspase-9 activity reconstitution assays of the peptides in the presence of the recombinant BIR3-domain of human XIAP (500 nM) revealed N-methylalanyl-tertiarybutylglycinyl-4-(R)-phenoxyprolyl-N-biphenylmethyl carboxamide (11a) to be the most potent XIAP BIR3 antagonist of the series synthesized inducing 93% recovery of caspase-9 activity, when used at 1 μM concentration. Compound (11a) also demonstrated moderate cytotoxicity against the breast cancer cell lines MDA-MB-231 and MCF-7, compared to the Smac/DIABLO-derived wild-type peptide sequences that were totally inactive in the same cell lines.  相似文献   

2.
3.
Two series of thiazolidinone derivatives designing for potential EGFR and HER-2 kinase inhibitors have been discovered. Some of them exhibited significant EGFR and HER-2 inhibitory activity. Compound 2-(2-(5-bromo-2-hydroxybenzylidene)hydrazinyl)thiazol-4(5H)-one (12) displayed the most potent inhibitory activity (IC50 = 0.09 μM for EGFR and IC50 = 0.42 μM for HER-2), comparable to the positive control erlotinib. Docking simulation was performed to position compound 12 into the EGFR active site to determine the probable binding model. Antiproliferative assay results indicating that some of the thiazolidinone derivatives own high antiproliferative activity against MCF-7. Compound 12 with potent inhibitory activity in tumor growth inhibition would be a potential anticancer agent.  相似文献   

4.
A series of 43, 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues (D01D43) were analysed using Petra, Osiris, Molinspiration and ALOGPS (POMA) to identify pharmacophore, toxicity prediction, lipophilicity and bioactivity. All the compounds were evaluated for anti-HIV activity. 3-(4-Chlorophenyl)-N-(4-fluorophenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide (D07) was found to be the most active with IC50 > 4.83 μM and CC50 4.83 μM. 3-(4-Fluorophenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carbothioamide (D41) was found to be the most active compound against bacterial strains with MIC of 4 μg/ml, comparable to the standard drug ciprofloxacin while 3-(4-methoxyphenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide (D38) was found to be the most active compound against fungal strains with MIC 2–4 μg/ml, however less active than standard fluconazole. Toxicities prediction by Osiris were well supported and experimentally verified with exception of some compounds. In anticonvulsant screening, 3-(4-fluorophenyl)-N-(4-chlorophenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide (D09) showed maximum activity showing 100% (4/4, 0.25–0.5 h) and 75% (3/4, 1.0 h) protection against minimal clonic seizure test without any toxicity.  相似文献   

5.
DNA gyrase of Mycobacterium tuberculosis (MTB) is a type II topoisomerase and is a well-established and validated target for the development of novel therapeutics. By adapting the medium throughput screening approach, we present the discovery and optimization of ethyl 5-(piperazin-1-yl) benzofuran-2-carboxylate series of mycobacterial DNA gyraseB inhibitors, selected from Birla Institute of Technology and Science (BITS) database chemical library of about 3000 molecules. These compounds were tested for their biological activity; the compound 22 emerged as the most active potent lead with an IC50 of 3.2 ± 0.15 μM against Mycobacterium smegmatis DNA gyraseB enzyme and 0.81 ± 0.24 μM in MTB supercoiling activity. Subsequently, the binding of the most active compound to the DNA gyraseB enzyme and its thermal stability was further characterized using differential scanning fluorimetry method.  相似文献   

6.
Glycosyltransferase MurG catalyses the transfer of N-acetyl-d-glucosamine to lipid intermediate I on the bacterial peptidoglycan biosynthesis pathway, and is a target for development of new antibacterial agents. A transition state mimic was designed for MurG, containing a functionalised proline, linked through the α-carboxylic acid, via a spacer, to a uridine nucleoside. A set of 15 functionalised prolines were synthesised, using a convergent dipolar cycloaddition reaction, which were coupled via either a glycine, proline, sarcosine, or diester linkage to the 5′-position of uridine. The library of 18 final compounds were tested as inhibitors of Escherichia coli glycosyltransferase MurG. Ten compounds showed inhibition of MurG at 1 mM concentration, the most active with IC50 400 μM. The library was also tested against Mycobacterium tuberculosis galactosyltransferase GlfT2, and one compound showed effective inhibition at 1 mM concentration.  相似文献   

7.
Tuberculosis is a serious infectious disease caused by human pathogen bacteria Mycobacterium tuberculosis. Bacterial drug resistance is a very significant medical problem nowadays and development of novel antibiotics with different mechanisms of action is an important goal of modern medical science. Leucyl-tRNA synthetase (LeuRS) has been recently clinically validated as antimicrobial target. Here we report the discovery of small-molecule inhibitors of M. tuberculosis LeuRS. Using receptor-based virtual screening we have identified six inhibitors of M. tuberculosis LeuRS from two different chemical classes. The most active compound 4-{[4-(4-Bromo-phenyl)-thiazol-2-yl]hydrazonomethyl}-2-methoxy-6-nitro-phenol (1) inhibits LeuRS with IC50 of 6 μM. A series of derivatives has been synthesized and evaluated in vitro toward M. tuberculosis LeuRS. It was revealed that the most active compound 2,6-Dibromo-4-{[4-(4-nitro-phenyl)-thiazol-2-yl]-hydrazonomethyl}-phenol inhibits LeuRS with IC50 of 2.27 μM. All active compounds were tested for antimicrobial effect against M. tuberculosis H37Rv. The compound 1 seems to have the best cell permeability and inhibits growth of pathogenic bacteria with IC50 = 10.01 μM and IC90 = 13.53 μM.  相似文献   

8.
New Schiff’s base derivatives 5aj have been synthesized by reaction between 2-phenoxyquinoline-3-carbaldehydes 3aj and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetohydrazide 4 in presence of nickel(II) nitrate as a catalyst in ethanol under reflux in good yield (78–92%). All compounds were tested for anticancer and inhibition of EGFR. Of the compounds studied, majority of the compounds showed effective antiproliferation and inhibition of EGFR and HER-2 activities. Compound 5h showed most effective inhibition (IC50 = 0.12 ± 0.05 μM) by binding in to the active pocket of EGFR receptor with minimum binding energy (ΔGb = −58.3691 kcal/mol). The binding was stabilized by two hydrogen bonds, two π–cation and one π–sigma interactions. Compound 5d showed most effective inhibition (IC50 = 0.37 ± 0.04 μM).  相似文献   

9.
In this study, a series of 22 ring-substituted 1-hydroxynaphthalene-2-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Mycobacterium marinum, Mycobacterium kansasii and Mycobacterium smegmatis. The compounds were also tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Most of tested compounds showed the antimycobacterial activity against the three strains comparable or higher than the standard isoniazid. N-(3-Fluorophenyl)-1-hydroxynaphthalene-2-carboxamide showed the highest biological activity (MIC = 28.4 μmol/L) against M. marinum, N-(4-fluorophenyl)-1-hydroxynaphthalene-2-carboxamide showed the highest biological activity (MIC = 14.2 μmol/L) against M. kansasii, and N-(4-bromophenyl)-1-hydroxynaphthalene-2-carboxamide expressed the highest biological activity (MIC = 46.7 μmol/L) against M. smegmatis. This compound and 1-hydroxy-N-(3-methylphenyl)naphthalene-2-carboxamide were the most active compounds against all three tested strains. The PET inhibition expressed by IC50 value of the most active compound 1-hydroxy-N-(3-trifluoromethylphenyl)naphthalene-2-carboxamide was 5.3 μmol/L. The most effective compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. For all compounds, structure–activity relationships are discussed.  相似文献   

10.
The synthesis and anti-tumor activity screening of new steroidal derivatives (418) containing pharmacologically attractive pyrazoline moieties are performed. During in vitro anticancer evaluation, the newly synthesized compounds displayed moderate to good cytotoxicity on cervical and leukemia cancer cell lines. In addition these compounds were found to be nontoxic to normal cell (PBMCs) (IC50 > 50 μM). The structure–activity relationship is also discussed. The most effective anticancer compound 9 was found to be active with IC50 value of 10.6 μM. It demonstrated significant antiproliferative influence on Jurkat cell lines. The morphological changes and growth characteristics of HeLa cells treated with compound 4 were analyzed by means of SEM.  相似文献   

11.
Cytokinin ribosides (N6-substituted adenosine derivatives) have been shown to have anticancer activity both in vitro and in vivo. This study presents the first systematic analysis of the relationship between the chemical structure of cytokinins and their cytotoxic effects against a panel of human cancer cell lines with diverse histopathological origins. The results confirm the cytotoxic activity of N6-isopentenyladenosine, kinetin riboside, and N6-benzyladenosine and show that the spectrum of cell lines that are sensitive to these compounds and their tissues of origin are wider than previously reported. The first evidence that the hydroxylated aromatic cytokinins (ortho-, meta-, para-topolin riboside) and the isoprenoid cytokinin cis-zeatin riboside have cytotoxic activities is presented.Most cell lines in the panel showed greatest sensitivity to ortho-topolin riboside (IC50 = 0.5–11.6 μM). Cytokinin nucleotides, some synthesized for the first time in this study, were usually active in a similar concentration range to the corresponding ribosides. However, cytokinin free bases, 2-methylthio derivatives and both O- and N-glucosides showed little or no toxicity. Overall the study shows that structural requirements for cytotoxic activity of cytokinins against human cancer cell lines differ from the requirements for their activity in plant bioassays. The potent anticancer activity of ortho-topolin riboside (GI50 = 0.07–84.60 μM, 1st quartile = 0.33 μM, median = 0.65 μM, 3rd quartile = 1.94 μM) was confirmed using NCI60, a standard panel of 59 cell lines, originating from nine different tissues. Further, the activity pattern of oTR was distinctly different from those of standard anticancer drugs, suggesting that it has a unique mechanism of activity. In comparison with standard drugs, oTR showed exceptional cytotoxic activity against NCI60 cell lines with a mutated p53 tumour suppressor gene. oTR also exhibited significant anticancer activity against several tumour models in in vivo hollow fibre assays.  相似文献   

12.
New Schiff’s base derivatives 5a5h have been synthesized by reaction between 1-(4-bromophenyl)-2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethanone 3 and various benzohydrazide 4a4h in presence of nickel (II) nitrate as a catalyst in ethanol at room temperature in good yield (54–88%). All compounds were tested for antibacterial as well as anticancer and inhibition of EGFR. Of the compounds studied, compounds 5d, 5f and 5g in the case of antiproliferation and inhibition of EGFR as well as compounds 5b, 5c, 5e and 5h in the case of antibacterial activity were found to be most effective compounds in the series. Compound 5f shows effective inhibition (IC50 = 0.21 ± 0.02 μM) by binding in to the active pocket of EGFR receptor with minimum binding energy (ΔGb = ?49.4869 kcal/mol).  相似文献   

13.
In this study, twenty-five (25) substituted aryl thiazoles (SAT) 125 were synthesized, and their in vitro cytotoxicity was evaluated against four cancer cell lines, MCF-7 (ER+ve breast), MDA-MB-231 (ER−ve breast), HCT116 (colorectal) and HeLa (cervical). The activity was compared with the standard anticancer drug doxorubicin (IC50 = 1.56 ± 0.05 μM). Among them, compounds 1, 48, and 19 were found to be toxic to all four cancer cell lines (IC50 values 5.37 ± 0.56–46.72 ± 1.80 μM). Compound 20 was selectively active against MCF7 breast cancer cells with IC50 of 40.21 ± 4.15 μM, whereas compound 19 was active against MCF7 and HeLa cells with IC50 of 46.72 ± 1.8, and 19.86 ± 0.11 μM, respectively. These results suggest that substituted aryl thiazoles 1 and 4 deserve to be further investigated in vivo as anticancer leads.  相似文献   

14.
A new series of 3-substituted-4-hydroxycoumarin derivatives was designed, synthesized, and evaluated for CDK inhibiting and anticancer activities. All the synthesized target compounds showed remarkably high affinity and selectivity towards CDK1B, compared to flavopiridol, with Ki values in the low nanomolar range (Ki = 0.35–0.88 nM). Most of them elicited considerable inhibiting effect against CDK9T1 (Ki = 3.26–23.45 nM). Moreover, all the target compounds were tested in vitro against eighteen types of human tumor cell lines. The hydrazone 3a, N-phenylpyrazoline derivative 6b and 2-aminopyridyl-3-carbonitrile derivative 8c were the most potent anticancer agents against MCF-7 breast cancer cell line (IC50 = 0.21, 0.21 and 0.23 nM, respectively). The target compounds 3a, 6b and 8c were further evaluated in MCF-7 breast cancer mouse xenograft model and showed in vivo efficacy at 10 mg/kg dose. The docking study confirmed a unique binding mode in the active site of CDK1B with better score than flavopiridol. Quantitative structure activity relationship study was done and revealed a highly predictive power R2 of 0.81.  相似文献   

15.
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2az were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with Ki values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with Ki value of 0.06 μM against mtPPO, comparable to (Ki = 0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (Ki = 0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 g ai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 g ai/ha, whereas they are susceptible to sulfentrazone even at 75 g ai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields.  相似文献   

16.
A novel series of 3,5,6-trisubstituted pyrazolo[4,3-d]pyrimidin-7-one derivatives, especially 6-N-arylcarboxamidopyrazolo[4,3-d]pyrimidin-7-ones were synthesized and evaluated for their in vitro anticancer activities against various human cancer cell lines. The inhibitory activities for several kinases have also been tested. The prepared compounds library exhibited significant anticancer activity towards HT-29 colon and DU-145 prostate cancer cell lines. The structure–activity relationships of the 6-N-arylcarboxamidopyrazolo[4,3-d]pyrimidin-7-one scaffold at R1, R2 and R3 have been elucidated. Among the synthesized compounds, 12b was the most active compound with GI50 value of 0.44 μM and 1.07 μM against HT-29 and DU-145 cell lines, respectively, and 13a was the most selective compound towards colon cancer cell line.  相似文献   

17.
A new series of biquinoline–pyridine hybrids were designed and synthesized by a base-catalyzed cyclocondensation through one-pot multicomponent reaction. All compounds were tested for in vitro anticancer activities against two cancer cell lines A549 (adenocarcinomic human alveolar basal epithelial) and Hep G2 (liver cancer). Enzyme inhibitory activities of all compounds were carried out against EGFR and HER-2 kinase. Of the compounds studied, majority of the compounds showed effective anticancer activity against used cancer cell lines. Compound 9i (IC50 = 0.09 μM) against EGFR and (IC50 = 0.2 μM) against HER-2 kinase displayed the most potent inhibitory activity as compared to other member of the series. In the molecular modelling study, compound 9i was bound in to the active pocket of EGFR with four hydrogen bonds and two π–cation interactions having minimum binding energy ΔGb = −54.4 kcal/mol.  相似文献   

18.
In an attempt to find potential anticancer agents, a series of novel ethyl 4-(3-(aryl)-1-phenyl-1H-pyrazol-4-yl)-2-oxo-6-(pyridin-3-yl)cyclohex-3-enecarboxylates 5a-i and 5-(3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl)-3-(pyridin-3-yl)-4,5-dihydropyrazole-1-carbothioamides 6a-i were designed, synthesized and evaluated for their topoisomerase IIα inhibitory activity and in vitro cytotoxicity against a panel of cancerous cell lines (MCF-7, NCI-H460, HeLa) and a normal cell line (HEK-293T). Molecular docking studies of all the synthesized compounds into the binding site of topoisomerase IIα protein (PDB ID: 1ZXM) were performed to gain a comprehensive understanding into plausible binding modes. These compounds were also screened for in silico drug-likeliness properties on the basis of the absorption, distribution, metabolism and excretion (ADME) prediction. Among all the synthesized compounds, analogue 5d showed superior cytotoxicity with an IC50 value of 7.01 ± 0.60 μM for HeLa, 8.55 ± 0.35 μM for NCI-H460 and 14.31 ± 0.90 for MCF-7 cancer cell lines. Further, compound 5d showed 70.82% inhibition of topoisomerase IIα at a concentration of 100 μM with maximum docking score of −8.24. Results of ADME prediction revealed that most of these compounds showed in silico drug-likeliness properties within the ideal range.  相似文献   

19.
A three-step synthetic pathway has been employed to synthesize a small library of 2-(4-arylpiperidin-1-yl)-1-(1H-indol-3-yl)ethanone and 2-(4-arylpiperidin-1-yl)-1-(1H-indol-3-yl)ethane-1,2-dione derivatives that have been screened in [3H]ifenprodil competition binding assay. Some compounds exhibited significant binding affinity at nanomolar concentration, the most active being ligand 35 (IC50 = 5.5 nM). Docking experiments suggested the main interactions between 35 and GluN2B-containing NMDA receptors. Notably, the compound 35 reduced NMDA-mediated excitatory post-synaptic currents recorded in mouse hippocampal slices indicating antagonistic effects (50 nM). Moreover, the compound 35 has shown antioxidant effects in a preliminary screening, thus suggesting that it might be considered prototype for future drug development of novel ‘dual target’ neuroprotective agents.  相似文献   

20.
A series of novel thiazolyl-pyrazoline derivatives containing benzodioxole (C1–C20) have been designed and synthesized. Among of the synthesized compounds, 2-(5-(benzo[d][1,3]dioxol-5-yl)-3-(4-bromophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-(4-bromophenyl)thiazole (C6) displayed the most potent inhibitory activity for HER-2 (IC50 = 0.18 μM for HER-2). Antiproliferative assay results indicated that compound C6 owned high antiproliferative activity against MCF-7 and B16-F10 in vitro, with IC50 value of 0.09 and 0.12 μM, respectively, being comparable with the positive control Erlotinib. Docking simulation was further performed to determine the probable binding model. Based on the preliminary results, compound C6 with potent inhibitory activity in tumor growth would be a potential anticancer agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号