首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

Maintaining variation in germination response provides a selective advantage, by spreading risk during recruitment. In fire-prone regions, physically dormant (PY) species vary their response to dormancy-breaking fire-related heat cues at the intra-population level. However little is known about physiologically dormant (PD) species, which respond to smoke cues. These contrasting dormancy types reflect different evolutionary developmental pathways and we considered whether intra-population variation in germination of Boronia floribunda (PD) occurs in response to smoke.

Methods

Seeds were collected from individual plants. We assessed germination magnitude and rate of seeds from each individual in response to a single aerosol smoke treatment, and three concentrations of smoke water, using replicate seed lots in temperature-controlled incubators.

Results

The magnitude and onset of germination differed significantly among individuals in response to the same smoke treatment. Seeds from different individuals varied in their sensitivity to smoke water concentration, with some responding to very low doses, and others obligated to high doses.

Conclusions

Variation in germination response to smoke highlights a mechanism by which PD species spread risk, by allowing some seeds to emerge quickly, while others remain dormant in the soil seed bank. The similarity to heat-cued variation displayed by PY species suggests that this could represent a convergent functional response.
  相似文献   

2.
  • Seed dormancy is the key driver regulating seed germination, hence is fundamental to the seedling recruitment life-history stage and population persistence. However, despite the importance of physical dormancy (PY) in timing post-fire germination, the mechanism driving dormancy-break within seed coats remains surprisingly unclear. We suggest that seed coat chemistry may play an important role in controlling dormancy in species with PY. In particular, seed coat fatty acids (FAs) are hydrophobic, and have melting points within the range of seed dormancy-breaking temperatures. Furthermore, melting points of saturated FAs increase with increasing carbon chain length. We investigated whether fire could influence seed coat FA profiles and discuss their potential influence on dormancy mechanisms.
  • Seed coat FAs of 25 species within the Faboideae, from fire-prone and fire-free ecosystems, were identified and quantified through GC–MS. Fatty acid profiles were interpreted in the context of species habitat and interspecific variation.
  • Fatty acid compositions were distinct between species from fire-prone and fire-free habitats. Fire-prone species tended to have longer saturated FA chains, a lower ratio of saturated to unsaturated FA, and a slightly higher relative amount of FAs compared to fire-free species.
  • The specific FA composition of seed coats of fire-prone species indicated a potential role of FAs in dormancy mechanisms. Overall, the distinct FA composition between fire-prone and fire-free species suggests that chemistry of the seed coat may be under selection pressure in fire-prone ecosystems.
  相似文献   

3.
Variation in dormancy thresholds among species is rarely studied but may provide a basis to better understand the mechanisms controlling population persistence. Incorporating dormancy‐breaking temperature thresholds into existing trait frameworks could improve predictions regarding seed bank persistence, and subsequently species resilience in response to fire, climate change and anthropogenic management. A key ecological strategy for many species from fire‐prone ecosystems is the possession of a long‐lived seed bank, ensuring recovery after fire. Physical dormancy is dominant in these ecosystems and maintaining this dormancy is directly linked to seed bank persistence. We identified a suite of seed‐related factors relevant to maintaining populations in fire‐prone regions for 14 co‐occurring physically dormant species. We measured variation in initial levels of dormancy and then applied experimental heating treatments, based on current seasonal temperatures and those occurring during fires, to seeds of all study species. Additionally, higher seasonal temperature treatments were applied to assess response of seeds to temperatures projected under future climate scenarios. Levels of germination response and mortality were determined to assess how tightly germination response was bound to either fire or seasonal cues. Six species were found to have dormancy cues bound to temperatures that only occur during fires (80°C and above) and were grouped as having obligate pyrogenic dormancy release. The remaining species, classified as having facultative pyrogenic dormancy, had lower temperature dormancy thresholds and committed at least 30% of seeds to germinate after summer‐temperature treatments. Evidence from this study supports including dormancy‐breaking temperature thresholds as an attribute for identifying functional types. High temperature thresholds for breaking dormancy, found in our obligate pyrogenic group, appear to be a fire‐adapted trait, while we predict that species in the facultative group are most at risk to increased seed bank decay resulting from elevated soil temperatures under projected climate change.  相似文献   

4.
Background and AimsIn Mediterranean ecosystems, the heat shock of wildfire disrupts physical seed dormancy in many plant species. This triggers germination in the post-fire environment where seedling establishment is optimal due to decreased competition and increased resource availability. However, to maintain the soil seed bank until a fire occurs, the minimum heat capable of breaking seed dormancy (i.e. the lower heat threshold) must be above the maximum temperatures typically observed in the soil during the summer. We therefore hypothesized that summer temperatures have shaped heat requirements for physical dormancy release. Specifically, we predicted that seeds from populations growing under warmer summers will have higher values of the lower heat threshold.MethodsTo evaluate this prediction, we collected seeds from two Cistus species in 31 populations (20 Cistus albidus and 11 Cistus salviifolius) along a climate gradient of summer temperatures on the eastern coast of Spain. For each population, seeds were treated to 10 min heat shocks, from 30 to 120 °C in 5 °C increments (19 treatments), to simulate increasing heat doses from summer to fire-related temperatures. Seeds were then germinated in the lab.Key ResultsFor all populations, maximum germination was observed when applying temperatures associated with fire. Lower heat thresholds varied among populations, with a positive relationship between summer temperatures at seed population origin and the heat dose required to break dormancy.ConclusionsOur results suggest that fire drives maximum dormancy release for successful post-fire germination, while summer temperatures determine lower heat thresholds for ensuring inter-fire seed bank persistence. Significant among-population variation of thresholds also suggests that post-fire seeder species have some potential to modify their dormancy release requirements in response to changing climate.  相似文献   

5.
Plant species with physical seed dormancy are common in mediterranean fire-prone ecosystems. Because fire breaks seed dormancy and enhances the recruitment of many species, this trait might be considered adaptive in fire-prone environments. However, to what extent the temperature thresholds that break physical seed dormancy have been shaped by fire (i.e., for post-fire recruitment) or by summer temperatures in the bare soil (i.e., for recruitment in fire-independent gaps) remains unknown. Our hypothesis is that the temperature thresholds that break physical seed dormancy have been shaped by fire and thus we predict higher dormancy lost in response to fire than in response to summer temperatures. We tested this hypothesis in six woody species with physical seed dormancy occurring in fire-prone areas across the Mediterranean Basin. Seeds from different populations of each species were subject to heat treatments simulating fire (i.e., a single high temperature peak of 100°C, 120°C or 150°C for 5 minutes) and heat treatments simulating summer (i.e., temperature fluctuations; 30 daily cycles of 3 hours at 31°C, 4 hours at 43°C, 3 hours at 33°C and 14 hours at 18°C). Fire treatments broke dormancy and stimulated germination in all populations of all species. In contrast, summer treatments had no effect over the seed dormancy for most species and only enhanced the germination in Ulex parviflorus, although less than the fire treatments. Our results suggest that in Mediterranean species with physical dormancy, the temperature thresholds necessary to trigger seed germination are better explained as a response to fire than as a response to summer temperatures. The high level of dormancy release by the heat produced by fire might enforce most recruitment to be capitalized into a single post-fire pulse when the most favorable conditions occur. This supports the important role of fire in shaping seed traits.  相似文献   

6.
BACKGROUND AND AIMS: Although a claim has been made that dormancy cycling occurs in seeds of Ipomoea lacunosa (Convolvulaceae) with physical dormancy, this would seem to be impossible since the water gap cannot be closed again after it opens (dormancy break). On the other hand, changes in sensitivity (sensitive <--> non-sensitive) to dormancy-breaking factors have been reported in seeds of Fabaceae with physical dormancy. The primary aim of the present study was to determine if sensitivity cycling also occurs in physically dormant seeds of I. lacunosa. METHODS: Treatments simulating conditions in the natural habitat of I. lacunosa were used to break seed dormancy. Storage of seeds at temperatures simulating those in spring, summer, autumn and winter were tested for their effect on sensitivity change. Seeds made non-dormant were stored dry in different temperature regimes to test for dormancy cycling. In addition, seeds collected on different dates (i.e. matured under different climatic conditions) were used to test for maternal effects on sensitivity to dormancy-breaking factors. KEY RESULTS: Sensitivity was induced by storing seeds under wet conditions and reversed by storing them under dry conditions at low (< or = 5 degrees C) or high (> or = 30 degrees C) temperatures, demonstrating that seeds of I. lacunosa can cycle between sensitive and insensitive states. Sensitive seeds required > or = 2 h at 35 degrees C on moist sand for release of dormancy. However, there is no evidence to support dormancy cycling per se. Conceptual models are proposed for sensitivity cycling and germination phenology of I. lacunosa in the field. CONCLUSIONS: Seasonal germination behaviour of physically dormant I. lacunosa seeds can be explained by sensitivity cycling but not by dormancy cycling per se. Convolvulaceae is only the second of 16 families known to contain species with physical dormancy for which sensitivity cycling has been demonstrated.  相似文献   

7.
BACKGROUND AND AIMS: Germination studies of species from fire-prone habitats are often focused on the role that fire plays in breaking dormancy. However, for some plant groups in these habitats, such as the genus Leucopogon (Ericaceae), dormancy of fresh seeds is not broken by fire cues. In the field, these same species display a flush of seedling emergence post-fire. Dormancy and germination mechanisms therefore appear complex and mostly unknown. This study aimed to identify these mechanisms by establishing dormancy class and testing the effects of a set of typical germination cues, including those directly related to fire and entirely independent of fire. METHODS: To classify dormancy, we assessed seed permeability and embryo morphology, and conducted germination experiments at seasonal temperatures in incubators. To test the effects of fire cues on germination, factorial combinations of smoke, heat and dark treatments were applied. Ageing treatments, using burial and seasonal incubation, were also tested. Germination phenology was established. KEY RESULTS: Seeds were dormant at release and had underdeveloped embryos. Primary dormancy of the study species was classified as morphophysiological. Seasonal temperature changes overcame primary dormancy and controlled timing of germination. Fire cues did not break primary dormancy, but there was a trend for smoke to enhance germination once this dormancy was overcome. CONCLUSIONS: Despite the fact that fire is a predominant disturbance and that many species display a flush of emergence post-fire, seasonal temperatures broke the primary physiological dormancy of the study species. It is important to distinguish between fire being responsible for breaking dormancy and solely having a role in enhancing levels of post-fire germination for seeds in which dormancy has been overcome by other factors. Biogeographical evidence suggests that morphological and physiological factors, and therefore seasonal temperatures, are likely to be important in controlling the dormancy and patterns of post-fire germination of many species in fire-prone regions.  相似文献   

8.
In this study of Acartia hudsonica, the change in egg types from subitaneous eggs to dormant eggs was investigated. Temperature and photoperiod were hypothesized to act as the proximal environmental cues inducing this population to produce dormant eggs, and the variation in the dormant egg responses of individual females was quantified. Some field-collected females produced some dormant eggs early in the spring (March and April), but most of the switch to dormant eggs occurred in late June. Short-term experiments showed that increased temperatures increased the percentage of dormant eggs produced, whereas increased length of day did not. Long-term experiments showed a different pattern from short-term experiments, indicating that duration of exposure to particular temperatures or photoperiods may influence dormant egg production. Under certain conditions, it appeared that nearly all copepods were capable of producing dormant eggs, although identical experimental conditions did not affect all individuals similarly. In several experiments that revealed a significant treatment effect, between 42% and 85% of the variance detected could be attributed to variation among individuals. Also, the fraction of individuals producing dormant eggs generally increased with increasing water temperature. In Narragansett Bay, A. hudsonica appears to produce dormant eggs primarily in response to increased water temperatures although an effect of photoperiod could not be ruled out. Furthermore, individual responses vary greatly. Appreciation of such variation in an important life history trait, such as embryonic dormancy, is important in understanding how this population may be adapted to its environment.  相似文献   

9.
Ephemeral wetland vegetation (EWV) in the Mediterranean Basin appears in temporary wetlands where favourable hydrological conditions exist only for a short time and year-to-year variability is high. Here, we report results of the seed germination, dormancy and desiccation tolerance of eight annual species living in this vulnerable habitat. Experiments were performed in laboratory conditions under constant and alternating temperatures and using a 12-h daily photoperiod or continuous darkness. Whilst germination and dormancy differed between the species, seeds demonstrated an absolute light requirement and prefer cool temperatures to germinate (mean ≤15 °C). Logistic regression analysis showed significant effects of alternating temperature in all the species except in Tillaea vaillantii whose germination was stimulated by constant temperature. Mean temperature was a significant term in the logistic models for the dormant species Cicendia filiformis, Linum radiola and T. vaillantii for which after-ripening was an effective dormancy-breaking treatment. From these results we infer three strategies of regeneration by seeds: (1) species germinating during the whole vegetative season (2) species germinating in a narrow temperature niche and (3) species requiring flooding (T. vaillantii). Seeds possessed orthodox storage behaviour (tolerating drying to 15 % relative humidity) and may be amenable to seed banking as a means of ex-situ conservation. We conclude that EWV species are adapted to the irregular presence of water with characteristics that are typical of neither truly aquatic nor wetland plants. These EWV species showed a more plastic germination response based on alternating and constant temperature sensitivity and a low proportion of dormant seeds.  相似文献   

10.
The dormancy-breaking effect of several known germination promoters was studied in 9 genetically pure lines of Avena fatua L. during a period of controlled after-ripening. Changes in the germination response show at least two dormancy states in the caryopses of these lines. The first state is overcome by a short period of after-ripening and is insensitive to nitrate and azide, while the second state is more persistent and is sensitive to nitrate and azide. Both states are sensitive to gibberellic acid (OA,) and ethanol. In the most dormant lines a third ethanol-insensitive dormancy state is present. The duration of both major dormancy states was related to several environmental factors influencing plant growth and seed storage. Duration was increased in caryopses produced from plants matured under low temperatures (15°C) and decreased in caryopses produced from plants matured under high temperatures (25°C). Duration was increased in caryopses after-ripened under low temperatures (4°C) and decreased in caryopses after-ripened under high temperatures (45°C). Dehulling the seeds prior to after-ripening reduced the duration of both major dormancy states. The multiple state dormancy system and its environmentally induced plasticity are discussed with reference to previous explanations of the dormancy mechanism in wild oats.  相似文献   

11.
  • Dormancy cycling is a key mechanism that contributes to the maintenance of long‐term persistent soil seed banks, but has not been recorded in long‐lived woody shrub species from fire‐prone environments. Such species rely on seed banks and dormancy break as important processes for post‐fire recruitment and recovery.
  • We used germination experiments with smoke treatments on fresh seeds and those buried for 1 year (retrieved in spring) and 1.5 years (retrieved the following late autumn) to investigate whether Asterolasia buxifolia, a shrub from fire‐prone south‐eastern Australia with physiologically dormant seeds, exhibited dormancy cycling.
  • All seeds had an obligation for winter seasonal temperatures and smoke to promote germination, even after ageing in the soil. A high proportion of germination was recorded from fresh seeds. but germination after the first retrieval was significantly lower, despite high seed viability. After the second retrieval, germination returned to the initial level. This indicates a pattern of annual dormancy cycling; one of the few observations, to our knowledge, for a perennial species. Additionally, A. buxifolia’s winter temperature and smoke requirements did not change over time, highlighting the potential for seeds to remain conditionally dormant (i.e. restricted to a narrow range of germination conditions) for long periods.
  • For physiologically dormant species, such as A. buxifolia, we conclude that dormancy cycling is an important driver of successful regeneration, allowing seed bank persistence, sometimes for decades, during fire‐free periods unsuitable for successful recruitment, while ensuring that a large proportion of seeds are available for recruitment when a fire occurs.
  相似文献   

12.
Cochrane  Anne 《Plant Ecology》2019,220(2):241-253

This multi-year study examined temperature requirements for dormancy release in physically dormant seeds of the threatened legume Acacia awestoniana (Fabaceae) from Western Australia. Seeds were collected from a single site in three consecutive years and exposed to multiple laboratory-based ‘fire’-related temperature treatments (intensity × duration). Experiments were conducted on seeds freshly collected and after 12 months storage under dry laboratory conditions in order to separate the influence of the maternal environment from post-harvest storage conditions on thresholds for dormancy release. Initial seed viability and non-dormant seed fraction did not differ between seed cohorts but there was a clear effect of storage on seed response: fresh seeds from 2016 demonstrated greater thermal resilience than stored seeds collected in the same year. Equally, there was a strong inter-annual response to treatments from fresh seeds collected in 2016 and 2017 attributed to the influence of the maternal environment during seed development. Seeds collected in 2015 and 2016 and stored for 12 months also demonstrated significant differences in their response to treatments, with 2015 seeds responding more favourably to treatment conditions than those from 2016. Plastic responses to external stimuli provide seeds with a strong bet-hedging capacity and the potential to cope with high levels of environmental heterogeneity, especially a mosaic of fire conditions. Such data provide insight for the management, conservation and restoration of this and similar threatened plant species in fire-prone ecosystems in the face of a rapidly changing climate and expected associated changes in the fire regime.

  相似文献   

13.
Abstract Seed germination is dependent on the interaction between the dormancy state of a seed and the presence of favourable environmental conditions. Thus, the spectacular pulse of seedling recruitment in many Australian vegetation communities following disturbances such as fire can be attributed to changes in microsite conditions and/or the dormancy‐breaking effect of the disturbance on accumulated seed banks. Grevillea rivularis is a threatened species endemic to the area immediately above Carrington Falls in the NSW Southern Highlands. Most of the population is confined to the riparian vegetation zone in woodland and heath, and is therefore subject to periodic disturbance from fire and flood. For this species, a pulse of seedling recruitment has been recorded after fire, flood and mechanical soil disturbance. The aims of this study were to examine the density and vertical distribution of the soil‐stored seed bank and to investigate the role of heat and scarification as cues for germination of fresh and soil‐stored seed. There was a large seed bank under the canopies of established individuals (194 ± 73 seeds m?2) and most seeds were found in the 0–2 cm and leaf‐litter layers of the soil profile. The germination response of soil‐stored and fresh seed was examined using a hierarchical series of laboratory experiments. Seeds of G. rivularis showed marked dormancy polymorphism. Thirty‐six percent of soil‐stored seed germinated without treatment, whereas no untreated fresh seeds germinated. Scarification or heating caused significant germination of dormant soil‐stored seed, but only scarification resulted in germination of dormant fresh seeds. These results highlight important differences in the dormancy state of soil‐stored and fresh seed. Thus, being a riparian species in a fire‐prone environment, the dormancy mechanisms in seeds of G. rivularis suit this species to disturbance by both fire and flood.  相似文献   

14.

Background and Aims

Seed dormancy varies within species in response to climate, both in the long term (through ecotypes or clines) and in the short term (through the influence of the seed maturation environment). Disentangling both processes is crucial to understand plant adaptation to environmental changes. In this study, the local patterns of seed dormancy were investigated in a narrow endemic species, Centaurium somedanum, in order to determine the influence of the seed maturation environment, population genetic composition and climate.

Methods

Laboratory germination experiments were performed to measure dormancy in (1) seeds collected from different wild populations along a local altitudinal gradient and (2) seeds of a subsequent generation produced in a common garden. The genetic composition of the original populations was characterized using intersimple sequence repeat (ISSR) PCR and principal co-ordinate analysis (PCoA), and its correlation with the dormancy patterns of both generations was analysed. The effect of the local climate on dormancy was also modelled.

Key Results

An altitudinal dormancy cline was found in the wild populations, which was maintained by the plants grown in the common garden. However, seeds from the common garden responded better to stratification, and their release from dormancy was more intense. The patterns of dormancy variation were correlated with genetic composition, whereas lower temperature and summer precipitation at the population sites predicted higher dormancy in the seeds of both generations.

Conclusions

The dormancy cline in C. somedanum is related to a local climatic gradient and also corresponds to genetic differentiation among populations. This cline is further affected by the weather conditions during seed maturation, which influence the receptiveness to dormancy-breaking factors. These results show that dormancy is influenced by both long-and short-term climatic variation. Such processes at such a reduced spatial scale highlight the potential of plants to adapt to fast environmental changes.  相似文献   

15.
Background and AimsDifferent seed dormancy classes control the timing of germination via different cues. The ecological dissimilarities between classes therefore suggest that they are likely to be subject to different selective pressures, and that species within each class will have diverse functional responses. We aimed to investigate this by assessing how variation in the distribution of dormancy classes is correlated with regional environmental factors, in particular rainfall seasonality and temperature. Additionally, we compare the relative proportions of species with physiological (PD) or physical (PY) dormancy to assess whether dormancy class influences their ability to persist under different rainfall seasonality regimes.MethodsDormancy class was assigned for 3990 species from 281 genera occurring across two climate regions, with either winter or aseasonal rainfall, across temperate fire-prone Australia. All regions have similar vegetation and fire regimes. Using a Bayesian framework, we compared the distribution of dormancy classes across temperature and rainfall climate gradients, for threatened and common species.Key ResultsA high dormant:non-dormant species ratio highlighted the critical role of dormancy across our study regions. Critically, species showing PD were more likely to be threatened in aseasonal rainfall climate regions.ConclusionsOur results support the assumption that dormancy is favoured in environments with stochastic disturbance  相似文献   

16.

Background and Aims

Knowledge of those traits that vary with latitude should be helpful in predicting how they may evolve locally under climate change. In the sea beet Beta vulgaris ssp. maritima, seed dormancy largely controls the timing of germination, is highly heritable and varies geographically; it is therefore thought to be selected by climate. The aim here was to characterize the variation in seed dormancy among sea beet populations across the French distribution area, as well as the ecological factors in situ that are correlated with and that could therefore select for seed dormancy. The relative importance of genetic inheritance vs. non-genetic variation is also evaluated.

Methods

The proportions of dormant seeds from 85 natural populations encompassing different climates over the whole French distribution area were measured under controlled conditions. Germination phenology was observed in a common garden experiment. Dormancy variation of seeds collected in situ was compared with that of seeds collected on plants grown in the greenhouse.

Key Results

The proportions of dormant seeds in the greenhouse were highly variable, covering almost the entire range from 0 to 1, and followed a geographical pattern from lower dormancy at high latitudes to high dormancy at low latitudes. The distribution of dormancy was positively correlated with yearly temperatures, especially summer temperatures. Minimum temperatures in winter did not significantly explain the trait variation. The genetic component of the total variation was significant and is probably completed by an important adjustment to the local conditions brought about by maternal adaptive phenotypic plasticity.

Conclusions

Dormancy in sea beet could be interpreted as a way to limit summer germination and spread germination over the first autumn and spring or following autumns. This highly heritable trait has the potential to evolve in the relatively near future because of climate change.  相似文献   

17.
How much seed remains in the soil after a fire?   总被引:2,自引:0,他引:2  
Soil seed banks that persist after a fire are important in fire-prone habitats as they minimise the risk of decline or local extinction in plants, should the fire-free interval be less than the primary juvenile periods of the species. In two common woody plant genera (Acacia and Grevillea) in southeastern Australia, we examined the size and location of the residual seed bank after fire across areas of varying seedling densities at three locations in comparison to the distribution of seeds in the soil at an unburnt site. We found viable dormant seeds remaining in the soil after fire (evidence of residual soil seed bank). A significantly lower proportion of seeds remained in the top 5 cm of soil than at 5–10 cm or 10–15 cm soil depths, independent of seedling density or plant genus. This was due to greater germination, and possibly some seed mortality, near the soil surface. Reduced germination below 5 cm was probably due to the reduced efficacy of the fire cues that break seed dormancy, a declining ability of seeds to emerge successfully from such depths, and the lower abundance of seeds in the soil at such depths. The magnitude of the residual seed bank was similar across 0–5, 5–10 and 10–15 cm soil depths in Acacia suaveolens. For two Grevillea species, most residual seeds were at 0–5 and 5–10 cm. The residual soil seed bank in the top 10 cm of soil after fire varied across sites with estimates of 0, 19 and 27% in G. speciosa and 23, 35, and 55% in A. suaveolens. At two sites, both species had similar residual seed bank sizes, while at a third, there were large differences between the species (0–55%). The observed patterns imply that the fire-related cues that break seed dormancy generally declined with soil depth. For Acacia, seed dormancy is broken by heat shock, a fire-cue that declines with soil depth. Some 250 species (approx 15% of the fire-prone flora) in the region are thought to have dormancy broken by heat shock. For Grevillea, where seed dormancy is broken by the interaction of smoke and heat shock, at two sites, we suggest three possibilities: (i) the smoke cue declined with soil depth; (ii) both heat and smoke are obligatory for breaking seed dormancy; or (iii) the cues may be independent and additive and below the zone of soil heating, only a proportion of available seeds had dormancy broken by smoke alone. At a third site (no residual seed bank detected) the smoke cue was predicted not to have declined with soil depth. Up to 900 species (just under half the fire-prone flora) in the study region are thought to have seed dormancy broken by the interaction of heat and smoke during the passage of a fire.  相似文献   

18.
Background and Aims Diaspores of heteromorphic species may germinate at different times due to distinct dormancy-breaking and germination requirements, and this difference can influence life history traits. The primary aim of this study was to determine the effect of germination time of the two seed morphs of Suaeda corniculata subsp. mongolica on life history traits of the offspring.Methods Germinated brown and black seeds were sown on the 20th of each month from April to September in a simulated but near-natural habitat of the species. Phenological and vegetative traits of the maternal plants, and number, size and germination percentage of the offspring were determined.Key Results Germinated seeds sown late in the year produced smaller plants that had a higher proportion of non-dormant brown than dormant black seeds, and these brown seeds were larger than those produced by germinated seeds sown early in the year. The length of the seedling stage for brown seeds was shorter than that for black seeds, and the root/shoot ratio and reproductive allocation of plants from brown seeds were more variable than they were for plants from black seeds. Late-germinating brown seeds produced larger plants than late-germinating black seeds.Conclusions Altering the proportion of the two seed types in response to germination timing can help alleviate the adverse effects of delayed germination. The flexible strategy of a species, such as S. corniculata, that produces different proportions of dimorphic seeds in response to variation in germination timing may favour the maintenance and regeneration of the population in its unpredictable environment.  相似文献   

19.
《Acta Oecologica》2006,29(2):187-195
Dahlia coccinea grows on fire-prone xerophilous shrubland, on a lava field located in Mexico City. Two kinds of experiments were performed to test the role of fire and environmental heterogeneity on germination. The first experiment tested the effect of environmental conditions (constant and alternating temperatures, cold stratification and light). The second one tested the effects of fire and high temperatures (dry and moist heat) on germination. Seeds of Dahlia were indifferent to light. The seeds showed physiological dormancy, which was lost by after-ripening or by gibberellins. During simulated fires, dry seeds tolerated high temperatures of short duration and also withstood prolonged exposure to 60 °C. Dry heat treatment reduced the mechanical restriction for embryo growth in dormant seeds. Ash and prolonged exposure to moist heat inhibited germination. Exogenous gibberellins reversed the deleterious effects of prolonged exposure to moist heat. The effect of cold stratification was related to the seeds' physiological stage and to light conditions; stratification in the dark reduced germination. Seeds of D. coccinea could tolerate, evade, or be slightly favored by the effects of low intensity fires occurring in their habitat. Seed responses to treatments suggest that the spatially heterogeneous lava field could provide a wide variety of micro-sites where physiological dormancy could be broken and during fires seeds could maintain their viability and subsequently germinate and/or develop a seed bank.  相似文献   

20.
Little is known about the variation in demographics, flower number, fruit set, and summer dormancy in Allium species native to the Intermountain West region of the United States. The purpose of this study was to investigate demographic patterns, summer dormancy traits, and variation in reproductive characteristics among habitats. Three populations of each of three species, Allium acuminatum, A. brandegei, and A. passeyi, were studied along an altitudinal gradient in northern Utah, USA, from 2004 to 2006. Demographic data were collected from individuals in permanent plots established in each population. Individual flowering plants were periodically monitored and used to calculate reproductive characteristics. Leaf area measurements throughout the 2005 growing season and soil temperature sensors were used to assess the relationship between habitat and dormancy characteristics. Populations of the widely distributed species, A. acuminatum and A. brandegei, were dominated by individuals in seedling and flowering stages while the restricted A. passeyi had populations containing a majority of individuals in the post-seedling, but non-flowering stage-class. There was a strong directional trend in A. acuminatum reproductive traits, with flower number and fruit set decreasing with increasing elevation. The mid-elevation A. brandegei populations were reproductively more successful than the high and low-elevation populations. The high-elevation A. passeyi population had more flowers per plant and higher fruit set in comparison to the lower elevation populations. The onset of summer dormancy as indicated by the timing of leaf senescence, was associated with high soil temperatures specific to each species. In general, the timing of leaf senescence was later in higher elevation populations in all species. A smaller proportion of non-flowering individuals in A. acuminatum and A. brandegei may indicate a high seedling mortality rate or a shorter juvenile phase in comparison to A. passeyi. The A. passeyi populations exhibit demographic characteristics of rare taxa; low seed production and low seedling recruitment. The high number of non-flowering plants in A. passeyi likely includes many reproductively mature individuals which are influenced by the unique habitat and environment of this species. Temperature is likely the key environmental cue inducing summer dormancy in all three species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号