首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors offer the potential of disease-modifying treatment for Alzheimer’s disease (AD). Since 2014, major breakthroughs have appeared in the field of BACE1 inhibitors. This review provides an overview of amidine-based BACE1 inhibitors between 2014 and 2018. Herein are summarized i) the structure-activity relationship, ii) the physiological results and iii) the potential risks from a lack of selectivity. This review also summarizes clinical scope, results and outlook of the compounds that have been or are currently under development in clinical trials.  相似文献   

2.
More than 100 years of research on Alzheimer’s disease didn’t yield a potential cure for this dreadful disease. Poor Blood Brain Barrier (BBB) permeability and P-glycoprotein binding of BACE1 inhibitors are the major causes for the failure of these molecules during clinical trials. The design of BACE1 inhibitors with a balance of sufficient affinity to the binding site and little or no interaction with P-glycoproteins is indispensable. Identification and understanding of protein–ligand interactions are essential for ligand optimization process. Structure-based drug design (SBDD) efforts led to a steady accumulation of BACE1-ligand crystal complexes in the PDB. This study focuses on analyses of 153 BACE1-ligand complexes for the direct contacts (hydrogen bonds and weak interactions) observed between protein and ligand and indirect contacts (water-mediated hydrogen bonds), observed in BACE1-ligand complex crystal structures. Intraligand hydrogen bonds were analyzed, with focus on ligand P-glycoprotein efflux. The interactions are dissected specific to subsites in the active site and discussed. The observed protein-ligand and intraligand interactions were used to develop the linear discriminant model for the identification of BACE1 inhibitors with less or no P-glycoprotein binding property. Excellent statistical results and model’s ability to correctly predict a new data-set with an accuracy of 92% is achieved. The results are retrospectively analyzed to give input for the design of potential BACE1 inhibitors.  相似文献   

3.
Beta-amyloid precursor protein cleavage enzyme1 (BACE1) and beta-amyloid precursor protein cleavage enzyme2 (BACE2), members of aspartyl protease family, are close homologs and have high similarity in their protein crystal structures. However, their enzymatic properties are different, which leads to different clinical outcomes. In this study, we performed sequence analysis and all-atom molecular dynamic (MD) simulations for both enzymes in their ligand-free states in order to compare their dynamical flap behaviors. This is to enhance our understanding of the relationship between sequence, structure and the dynamics of this protein family. Sequence analysis shows that in BACE1 and BACE2, most of the ligand-binding sites are conserved, indicative of their enzymatic property as aspartyl protease members. The other conserved residues are more or less unsystematically localized throughout the structure. Herein, we proposed and applied different combined parameters to define the asymmetric flap motion; the distance, d1, between the flap tip and the flexible region; the dihedral angle, φ, to account for the twisting motion and the TriCα angle, θ2 and θ1. All four combined parameters were found to appropriately define the observed “twisting” motion during the flaps different conformational states. Additional analysis of the parameters indicated that the flaps can exist in an ensemble of conformations, i.e. closed, semi-open and open conformations for both systems. However, the behavior of the flap tips during simulations is different between BACE1 and BACE2. The BACE1 active site cavity is more spacious as compared to that of BACE2. The analysis of 10S loop and 113S loop showed a similar trend to that of flaps, with the BACE1 loops being more flexible and less stable than those of BACE2. We believe that the results, methods and perspectives highlighted in this report would assist researchers in the discovery of BACE inhibitors as potential Alzheimer’s disease therapies.  相似文献   

4.
We have previously reported potent substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. While these inhibitors exhibited potent activities in enzymatic and cellular assays (KMI-429 in particular inhibited Aβ production in vivo), these inhibitors contained some natural amino acids that seemed to be required to improve enzymatic stability in vivo and permeability across the blood–brain barrier, so as to be practical drug. Recently, we synthesized non-peptidic and small-sized BACE1 inhibitors possessing a heterocyclic scaffold at the P2 position. Herein we report the SAR study of BACE1 inhibitors possessing this heterocyclic scaffold, a chelidonic or 2,6-pyridinedicarboxylic moiety.  相似文献   

5.
The aspartyl protease BACE1 (BACE) has emerged as an appealing target for reduction of amyloid-β in Alzheimer's disease. The clinical fate of active-site BACE inhibitors may depend on potential side effects related to enzyme and substrate selectivity. One strategy to reduce this risk is through development of allosteric inhibitors that interact with and modulate the Loop F region unique to BACE1. Previously, a BACE-inhibiting antibody (Ab) was shown by co-crystallization to bind and induce conformational changes of Loop F, resulting in backbone perturbations at the distal S6 and S7 subsites, preventing proper binding of a long APP-like substrate to BACE and inhibiting its cleavage. In an effort to discover small Loop F-interacting molecules that mimic the Ab inhibition, we evaluated a peptide series with a YPYF(I/L)P(L/Y) motif that was reported to bind a BACE exosite. Our studies show that the most potent inhibitor from this series, peptide 65007, has a similar substrate cleavage profile to the Ab and reduces sAPPβ levels in cell models and primary neurons. As our modeling indicates, it interacts with the Loop F region causing a conformational shift of the BACE protein backbone near the distal subsites. The peptide-bound enzyme adopts a conformation that closely overlays with the crystal structure (PDB: 3R1G) from Ab binding. Importantly, peptide 65007 appears to be BACE substrate and enzyme selective, showing little inhibition of NRG1, PSGL1, CHL1, or Cat D. Thus, peptide 65007 is a promising lead for discovery of Loop F-interacting small-molecule mimetics as allosteric inhibitors of BACE.  相似文献   

6.
Inhibition of BACE1 has become an important strategy in the quest for disease modifying agents to slow the progression of Alzheimer’s disease. We previously reported the fragment-based discovery of LY2811376, the first BACE1 inhibitor reported to demonstrate robust reduction of human CSF Aβ in a Phase I clinical trial. We also reported on the discovery of LY2886721, a potent BACE1 inhibitor that reached phase 2 clinical trials. Herein we describe the preparation and structure activity relationships (SAR) of a series of BACE1 inhibitors utilizing trans-cyclopropyl moieties as conformational constraints. The design, details of the stereochemically complex organic synthesis, and biological activity of these BACE1 inhibitors is described.  相似文献   

7.
A series of amides bearing a variety of amidine head groups was investigated as BACE1 inhibitors with respect to inhibitory activity in a BACE1 enzyme as well as a cell-based assay. Determination of their basicity as well as their properties as substrates of P-glycoprotein revealed that a 2-amino-1,3-oxazine head group would be a suitable starting point for further development of brain penetrating compounds for potential Alzheimer’s disease treatment.  相似文献   

8.
Traditional structure-based virtual screening method to identify drug-like small molecules for BACE1 is so far unsuccessful. Location of BACE1, poor Blood Brain Barrier permeability and P-glycoprotein (Pgp) susceptibility of the inhibitors make it even more difficult. Fragment-based drug design method is suitable for efficient optimization of initial hit molecules for target like BACE1. We have developed a fragment-based virtual screening approach to identify/optimize the fragment molecules as a starting point. This method combines the shape, electrostatic, and pharmacophoric features of known fragment molecules, bound to protein conjugate crystal structure, and aims to identify both chemically and energetically feasible small fragment ligands that bind to BACE1 active site. The two top-ranked fragment hits were subjected for a 53 ns MD simulation. Principle component analysis and free energy landscape analysis reveal that the new ligands show the characteristic features of established BACE1 inhibitors. The potent method employed in this study may serve for the development of potential lead molecules for BACE1-directed Alzheimer’s disease therapeutics.  相似文献   

9.
Discovering multifunctional agents for the treatment of Alzheimer’s disease (AD) is an attractive therapeutic approach. BACE1 (β-site amyloid precursor protein cleaving enzyme 1) inhibitors may play a pivotal role in treating AD. Therefore, the discovery of novel non-peptide BACE1 inhibitors with desirable blood brain barrier permeability is a favorable approach for treatment. Moreover, the antioxidant potential of a drug could serve as an added value for designing dual-acting therapeutic agents. Here, we report the design, synthesis and biological evaluation of quinazolinone-hydrazone derivatives as new multi-target candidates for the treatment of AD. The compounds were investigated for their in vitro BACE1 inhibitory potential using a FRET-based enzymatic assay and also screened for antioxidant activity using DPPH. Among them, compound 4h bearing a 2,3-dichlorophenyl moiety showed the highest activity with an IC50 value of 3.7 μM against BACE1. In addition, compound 4i with a 2,4-dihydroxyphenyl scaffold demonstrated moderate BACE1 inhibitory activity (IC50 = 27.6 μM) with a significant antioxidant effect (IC50 = 8.4 μM). Furthermore, docking studies revealed strong interaction between compound 4h and the key residues of BACE1 active site. These results demonstrate that quinazolinone-hydrazone derivatives represent a valuable scaffold for the discovery of novel non-peptidic BACE1 inhibitors.  相似文献   

10.
We report in this work new substituted aminopyrimidine derivatives acting as inhibitors of the catalytic site of BACE1. These compounds were obtained from a molecular modeling study. The theoretical and experimental study reported here was carried out in several steps: docking analysis, Molecular Dynamics (MD) simulations, Quantum Theory Atom in Molecules (QTAIM) calculations, synthesis and bioassays and has allowed us to propose some compounds of this series as new inhibitors of the catalytic site of BACE1. The QTAIM study has allowed us to obtain an excellent correlation between the electronic densities and the experimental data of IC50. Also, using combined techniques (MD simulations and QTAIM calculations) enabled us to describe in detail the molecular interactions that stabilize the different L-R complexes. In addition, our results allowed us to determine what portion of these compounds should be changed in order to increase their affinity with the BACE1. Another interesting result is that a sort of synergism was observed when the effects of these new catalytic site inhibitors were combined with Ac-Tyr5-Pro6-Tyr7-Asp8-Ile9-Pro10-Leu11-NH2, which we have recently reported as a modulator of BACE1 acting on its exosite.  相似文献   

11.
BACE2 is a membrane-bound aspartic protease of the A1 family with a high level of sequence homology to BACE1. While BACE1 is involved in the generation of amyloid plaques in Alzheimer's disease by cleaving Abeta-peptides from the amyloid precursor protein, the physiological function of BACE2 is not well understood. BACE2 appears to be associated with the early onset of dementia in patients with Down's syndrome, and it has been shown to be highly expressed in breast cancers. Further, it may participate in the function of normal and abnormal processes of human muscle biology. Similar to other aspartic proteases, BACE2 is expressed as an inactive zymogen requiring the cleavage of its pro-sequence during the maturation process. We have produced mature BACE2 by expression of pro-BACE2 in Escherichia coli as inclusion bodies, followed by refolding and autocatalytic activation at pH 3.4. Using a C and N-terminally truncated BACE2 variant, we were able to crystallize and determine the crystal structure of mature BACE2 in complex with a hydroxyethylamine transition-state mimetic inhibitor at 3.1 angstroms resolution. The structure of BACE2 follows the general fold of A1 aspartic proteases. However, similar to BACE1, its C-terminal domain is significantly larger than that of the other family members. Furthermore, the structure of BACE2 reveals differences in the S3, S2, S1' and S2' active site substrate pockets as compared to BACE1, and allows, therefore, for a deeper understanding of the structural features that may facilitate the design of selective BACE1 or BACE2 inhibitors.  相似文献   

12.
β-淀粉样蛋白(Aβ)在脑内的沉积被认为是阿尔茨海默病(AD)发病的始动因素之一.β-淀粉样蛋白前体蛋白裂解酶1(BACE1)是Aβ产生过程中重要的蛋白酶.BACE1在细胞内的表达与成熟受多种因素调节.BACE1与缺血缺氧、炎症应激等多种AD早期的分子病理变化相关,BACE1、Aβ及其相关细胞因子可能成为体液生物学标记物,为临床早期诊断AD提供新的手段.  相似文献   

13.
β-Secretase (BACE1) is an attractive drug target for Alzheimer disease. However, the design of clinical useful inhibitors targeting its active site has been extremely challenging. To identify alternative drug targeting sites we have generated a panel of BACE1 monoclonal antibodies (mAbs) that interfere with BACE1 activity in various assays and determined their binding epitopes. mAb 1A11 inhibited BACE1 in vitro using a large APP sequence based substrate (IC(50) ~0.76 nm), in primary neurons (EC(50) ~1.8 nm), and in mouse brain after stereotactic injection. Paradoxically, mAb 1A11 increased BACE1 activity in vitro when a short synthetic peptide was used as substrate, indicating that mAb 1A11 does not occupy the active-site. Epitope mapping revealed that mAb 1A11 binds to adjacent loops D and F, which together with nearby helix A, distinguishes BACE1 from other aspartyl proteases. Interestingly, mutagenesis of loop F and helix A decreased or increased BACE1 activity, identifying them as enzymatic regulatory elements and as potential alternative sites for inhibitor design. In contrast, mAb 5G7 was a potent BACE1 inhibitor in cell-free enzymatic assays (IC(50) ~0.47 nm) but displayed no inhibitory effect in primary neurons. Its epitope, a surface helix 299-312, is inaccessible in membrane-anchored BACE1. Remarkably, mutagenesis of helix 299-312 strongly reduced BACE1 ectodomain shedding, suggesting that this helix plays a role in BACE1 cellular biology. In conclusion, this study generated highly selective and potent BACE1 inhibitory mAbs, which recognize unique structural and functional elements in BACE1, and uncovered interesting alternative sites on BACE1 that could become targets for drug development.  相似文献   

14.
We describe a systematic study of how macrocyclization in the P1–P3 region of hydroxyethylamine-based inhibitors of β-site amyloid precursor protein (APP)-cleaving enzyme (BACE1) modulates in vitro activity. This study reveals that in a number of instances macrocyclization of bis-terminal dienes leads to improved potency toward BACE1 and selectivity against cathepsin D (CatD), as well as greater amyloid β-peptide (Aβ)-lowering activity in HEK293T cells stably expressing APPSW. However, for several closely related analogs the benefits of macrocyclization are attenuated by the effects of other structural features in different regions of the molecules. X-ray crystal structures of three of these novel macrocyclic inhibitors bound to BACE1 revealed their binding conformations and interactions with the enzyme.  相似文献   

15.
The (Z)-fluoro-olefin amide bioisosteric replacement is an effective tool for addressing various shortcomings of the parent amide. In an effort to fine tune ADME properties of BACE1 preclinical candidate AM-6494, a series of structurally distinct (Z)-fluoro-olefin containing analogs was developed that culminated in compound 15. Herein, we detail design considerations, synthetic challenges, structure activity relationship (SAR) studies, and in vivo properties of an advanced compound in this novel series of BACE1 inhibitors.  相似文献   

16.
β‐Site amyloid precursor protein cleaving enzyme 1 (BACE1) is known to be involved in the production of amyloid β‐peptide in Alzheimer's disease and is a major target for current drug design. We previously reported substrate‐based peptidomimetics, KMI‐compounds as potent BACE1 inhibitors. In this study, we designed and synthesized tetrapeptides as low molecular‐sized inhibitors. These exhibited high potency against recombinant BACE1, with the highest IC50 value of 34.6 nM from KMI‐927. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
天冬氨酰蛋白酶(β-site amyloid precursor protein cleaving enzyme 1, BACE1)作为治疗阿尔兹海默症的潜在靶点,其抑制剂的开发已成为医学领域的重要研究方向。本文以59个氨基恶唑啉呫吨类BACE1抑制剂为研究对象,运用比较分子相似性指数(comparative molecular similarity index, CoMSIA)和分子对接方法,深入挖掘影响抑制剂活性的特征结构,以及抑制剂与BACE1间的结合模式和作用力类型,并以此为基础设计新型抑制剂并预测其活性。CoMSIA模拟结果表明,由立体场、静电场、疏水场和氢键供体场4个场组合建立的构效关系模型具有较强的预测能力,交叉验证相关系数Q2=0.48, 非交叉验证相关系数Rncv2=0.94, 外部预测相关系数Rpre2=0.85;通过分子对接,发现抑制剂占据了靶标的S3、S1和S2'位点,与BACE1之间的结合主要是通过氢键作用力和π-π堆积作用实现的;占据S2'位点的R取代基是立体场、静电场和疏水场影响的敏感区域,氨基恶唑啉核心官能团是氢键供体场的敏感区域。基于以上分析获得的抑制剂特征结构信息及其与蛋白质受体的作用机制,成功设计出了新的分子并预测了抑制活性。实验所得模型和信息,为后续新型BACE1抑制剂的结构优化和改造提供了重要理论依据  相似文献   

20.
Amyloid-β peptide (Aβ), a putatively causative agent of Alzheimer’s disease (AD), is proteolytically derived from β-amyloid precursor protein (APP). Here we describe cellular assays to detect the activity of the key protease β-site of APP cleaving enzyme 1 (BACE1) based on an artificial reporter construct containing the BACE1 cleavage site of APP. These methods allow identification of inhibitors and indirect modulators of BACE1. In primary neuronal cultures transfected with human APP constructs (huAPP), Aβ production was modified by BACE1 inhibitors similarly to the production of endogenous murine Aβ in wild-type cells and to that of different transgenic neurons. To further improve the assay, we substituted the extracellular domain of APP by secreted alkaline phosphatase (SEAP). SEAP was easily quantified in the cell culture supernatants after cleavage of SEAP-APP by BACE1 or α-secretases. To render the assay specific for BACE1, the α-secretase cleavage site of SEAP-APP was eliminated either by site-directed mutagenesis or by substituting the transmembrane part of APP by the membrane domain of the erythropoietin receptor (EpoR). The pharmacology of these constructs was characterized in detail in HEK293 cells (human embryonic kidney cell line), and the SEAP-APP-EpoR construct was also introduced into primary murine neurons and there allowed specific measurement of BACE1 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号