首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the hydrogen (H2)-dependent discoloration of azo dye amaranth by Shewanella oneidensis MR-1 was investigated. Experiments with hydrogenase-deficient strains demonstrated that periplasmic [Ni–Fe] hydrogenase (HyaB) and periplasmic [Fe–Fe] hydrogenase (HydA) are both respiratory hydrogenases of dissimilatory azoreduction in S. oneidensis MR-1. These findings suggest that HyaB and HydA can function as uptake hydrogenases that couple the oxidation of H2 to the reduction of amaranth to sustain cellular growth. This constitutes to our knowledge the first report of the involvement of [Fe-Fe] hydrogenase in a bacterial azoreduction process. Assays with respiratory inhibitors indicated that a menaquinone pool and different cytochromes were involved in the azoreduction process. High-performance liquid chromatography analysis revealed that flavin mononucleotide and riboflavin were secreted in culture supernatant by S. oneidensis MR-1 under H2-dependent conditions with concentration of 1.4 and 2.4 μmol g protein-1, respectively. These endogenous flavins were shown to significantly accelerate the reduction of amaranth at micromolar concentrations acting as electron shuttles between the cell surface and the extracellular azo dye. This work may facilitate a better understanding of the mechanisms of azoreduction by S. oneidensis MR-1 and may have practical applications for microbiological treatments of dye-polluted industrial effluents.  相似文献   

2.
Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several different S. oneidensis MR-1 deletion mutants were generated and tested for current production and metal oxide reduction. The results showed that a few key cytochromes play a role in all of the processes but that their degrees of participation in each process are very different. Overall, these data suggest a very complex picture of electron transfer to solid and soluble substrates by S. oneidensis MR-1.  相似文献   

3.
Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms.  相似文献   

4.
Although microbial activity and associated iron (oxy)hydroxides are known in general to affect the environmental dynamics of 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), the mechanistic understanding of the underlying biophysico-chemical processes remains unclear due to limited experimental information. We studied how Shewanella oneidensis MR-1 –a widely distributed metal-reducing bacterium, in the presence of dissolved Fe(III), affects roxarsone transformations and biogeochemical cycling in a model aqueous system. The results showed that the MR-1 strain was able to anaerobically use roxarsone as a terminal electron acceptor and to convert it to a single product, 3-amino-4-hydroxybenzene arsonic acid (AHBAA). The presence of Fe(III) stimulated roxarsone transformation via MR-1-induced Fe(III) reduction, whereby the resulting Fe(II) acted as an efficient reductant for roxarsone transformation. In addition, the subsequent secondary Fe(III)/Fe(II) mineralization created conditions for adsorption of organoarsenic compounds to the yielded precipitates and thereby led to arsenic immobilization. The study provided direct evidence of Shewanella oneidensis MR-1-induced direct and Fe(II)-associated roxarsone transformation. Quantitative estimations revealed a candidate mechanism for the early-stage environmental dynamics of roxarsone in nature, which is essential for understanding the environmental dynamics of roxarsone and successful risk assessment.  相似文献   

5.
Al-Sheboul S  Saffarini D 《Anaerobe》2011,17(6):501-505
Shewanella oneidenesis MR-1 is a facultative anaerobe that can use a large number of electron acceptors including metal oxides. During anaerobic respiration, S. oneidensis MR-1 synthesizes a large number of c cytochromes that give the organism its characteristic orange color. Using a modified mariner transposon, a number of S. oneidensis mutants deficient in anaerobic respiration were generated. One mutant, BG163, exhibited reduced pigmentation and was deficient in c cytochromes normally synthesized under anaerobic condition. The deficiencies in BG163 were due to insertional inactivation of hemN1, which exhibits a high degree of similarity to genes encoding anaerobic coproporphyrinogen III oxidases that are involved in heme biosynthesis. The ability of BG163 to synthesize c cytochromes under anaerobic conditions, and to grow anaerobically with different electron acceptors was restored by the introduction of hemN1 on a plasmid. Complementation of the mutant was also achieved by the addition of hemin to the growth medium. The genome sequence of S. oneidensis contains three putative anaerobic coproporphyrinogen III oxidase genes. The protein encoded by hemN1 appears to be the major enzyme that is involved in anaerobic heme synthesis of S. oneidensis. The other two putative anaerobic coproporphyrinogen III oxidase genes may play a minor role in this process.  相似文献   

6.
7.
A DNA fragment containing a promoter-operator and structural parts of the uridine phosphorylase gene from Shewanella oneidensis MR-1 was cloned. Cross-heterological expression of the udp genes from Sh. oneidensis MR-1 and Escherichia coli under the control of authentic regulatory regions is shown. The UDP protein accumulates in an active form in the cytoplasmic fraction of cells. The recombinant UDP protein from Sh. oneidensis MR-1 obtained by heterological expression was isolated and characterized. E. coli udp gene promoter activity was observed during heterological expression in Sh. oneidensis MR-1 cells under both aerobic and anaerobic conditions.  相似文献   

8.
Microbial transformation of sulfate minerals plays an important role in controlling the behavior of heavy metals in mining areas. Here, the anaerobic reduction of Cr (VI)-loaded schwertmannite by Shewanella oneidensis MR-1 (S. oneidensis MR-1) was investigated. The release of ferrous iron (Fe(II)) to the solution demonstrated the microbial reduction of structural Fe(III) from the schwertmannite to Fe(II). The concentration of Cr in solution decreased in all treatments, indicating that no Cr was released to the solution during this bio-reduction process of schwertmannite. The incorporation of chromate into the mineral structure of schwertmannite increased the microbial stability of the mineral, retarding the formation of secondary phases during bio-reduction process. Analysis of the XRD, SEM and fourier transform infrared spectroscopy (FT-IR) results further showed that goethite formed after 3 or 7 days with a lower content (0.22% or 0.37%) of Cr in schwertmannite, while no secondary mineral was observed with a higher concentration of Cr (0.6 wt%) incorporated in schwertmannite until 22 days. These results imply that microbial reduction of Cr(VI)-loaded schwertmannite does not lead to the release of Cr to the solution, and the microbial stability of schwertmannite will be increased by the incorporation of chromate.  相似文献   

9.
The mechanisms underlying the use of insoluble electron acceptors by metal-reducing bacteria, such as Shewanella oneidensis MR-1, are currently under intensive study. Current models for shuttling electrons across the outer membrane (OM) of MR-1 include roles for OM cytochromes and the possible excretion of a redox shuttle. While MR-1 is able to release a substance that restores the ability of a menaquinone (MK)-negative mutant, CMA-1, to reduce the humic acid analog anthraquinone-2,6-disulfonate (AQDS), cross-feeding experiments conducted here showed that the substance released by MR-1 restores the growth of CMA-1 on several soluble electron acceptors. Various strains derived from MR-1 also release this substance; these include mutants lacking the OM cytochromes OmcA and OmcB and the OM protein MtrB. Even though strains lacking OmcB and MtrB cannot reduce Fe(III) or AQDS, they still release a substance that restores the ability of CMA-1 to use MK-dependent electron acceptors, including AQDS and Fe(III). Quinone analysis showed that this released substance restores MK synthesis in CMA-1. This ability to restore MK synthesis in CMA-1 explains the cross-feeding results and challenges the previous hypothesis that this substance represents a redox shuttle that facilitates metal respiration.  相似文献   

10.
In this work, the extracellular decolorization of aniline blue, a sulfonated triphenylmethane dye, by Shewanella oneidensis MR-1 was confirmed. S. oneidensis MR-1 showed a high capacity for decolorizing aniline blue even at a concentration of up to 1,000 mg/l under anaerobic conditions. Maximum decolorization efficiency appeared at pH?7.0 and 30 °C. Lactate was a better candidate of electron donor for the decolorization of aniline blue. The addition of nitrate, hydrous ferric oxide, or trimethylamine N-oxide all could cause a significant decline of decolorization efficiency. The Mtr respiratory pathway was found to be involved into the decolorization of aniline blue by S. oneidensis MR-1. The toxicity evaluation through phytotoxicity and genotoxicity showed that S. oneidensis MR-1 could decrease the toxicity of aniline blue during the decolorization process. Thus, this work may facilitate a better understanding on the degradation mechanisms of the triphenylmethane dyes by Shewanella and is beneficial to their application in bioremediation.  相似文献   

11.
Electrogenicity of Shewanella oneidensis MR-1 mutants FRS1 and FRB1 with reducing activity 30–40% higher than in the original strain was studied in various microbial fuel cells (MFC) developed in the course of the work. The voltage and current density developed by the mutants were 1.7 times higher than in the case of S. oneidensis MR-1. A correlation was found between reducing activity of the cells and the voltage and current density developed in MFC. The possibility for enhanced bioelectricity production in MFC by genetic modification of S. oneidensis MR-1 was demonstrated.  相似文献   

12.
Hydrogen Metabolism in Shewanella oneidensis MR-1   总被引:1,自引:0,他引:1       下载免费PDF全文
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of ΔhydA, ΔhyaB, and ΔhydA ΔhyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions.  相似文献   

13.
We performed whole-genome analyses of DNA methylation in Shewanella oneidensis MR-1 to examine its possible role in regulating gene expression and other cellular processes. Single-molecule real-time (SMRT) sequencing revealed extensive methylation of adenine (N6mA) throughout the genome. These methylated bases were located in five sequence motifs, including three novel targets for type I restriction/modification enzymes. The sequence motifs targeted by putative methyltranferases were determined via SMRT sequencing of gene knockout mutants. In addition, we found that S. oneidensis MR-1 cultures grown under various culture conditions displayed different DNA methylation patterns. However, the small number of differentially methylated sites could not be directly linked to the much larger number of differentially expressed genes under these conditions, suggesting that DNA methylation is not a major regulator of gene expression in S. oneidensis MR-1. The enrichment of methylated GATC motifs in the origin of replication indicates that DNA methylation may regulate genome replication in a manner similar to that seen in Escherichia coli. Furthermore, comparative analyses suggest that many Gammaproteobacteria, including all members of the Shewanellaceae family, may also utilize DNA methylation to regulate genome replication.  相似文献   

14.
Shewanella oneidensis is a model species for aquatic ecosystems and plays an important role in bioremediation, biofuel cell manufacturing and biogeochemical cycling. S. oneidensis MR-1 is able to generate hydrogen sulfide from various sulfur species; however, its catalytic kinetics have not been determined. In this study, five in-frame deletion mutants of S. oneidensis were constructed and their H2S-producing activities were analyzed. SirA and PsrA were the two major contributors to H2S generation under anoxic cultivation, and the optimum SO32− concentration for sulfite respiration was approximately 0.8 mM, while the optimum S2O32− concentration for thiosulfate respiration was approximately 0.4 mM. Sulfite and thiosulfate were observed to interfere with each other during respiration, and a high concentration of sulfite or thiosulfate chelated extracellular free-iron but did not repress the expression of sirA or psrA. Nitrite and nitrate were two preferred electron acceptors during anaerobic respiration; however, under energy-insufficient conditions, S. oneidensis could utilize multiple electron acceptors simultaneously. Elucidiating the stoichiometry of H2S production in S. oneidensis would be helpful for the application of this species in bioremediation and biofuel cell manufacturing, and would help to characterize the ecophysiology of sulfur cycling.  相似文献   

15.
Employing optical spectroscopy we have performed a comparative study of the dielectric response of extracellular matrix and filaments of electrogenic bacteria Shewanella oneidensis MR-1, cytochrome c, and bovine serum albumin. Combining infrared transmission measurements on thin layers with data of the terahertz spectra, we obtain the dielectric permittivity and AC conductivity spectra of the materials in a broad frequency band from a few cm?1 up to 7000 cm?1 in the temperature range from 5 to 300 K. Strong absorption bands are observed in the three materials that cover the range from 10 to 300 cm?1 and mainly determine the terahertz absorption. When cooled down to liquid helium temperatures, the bands in Shewanella oneidensis MR-1 and cytochrome c reveal a distinct fine structure. In all three materials, we identify the presence of liquid bound water in the form of librational and translational absorption bands at ≈ 200 and ≈ 600 cm?1, respectively. The sharp excitations seen above 1000 cm?1 are assigned to intramolecular vibrations.  相似文献   

16.
Bacteria from the genus Shewanella are the most diverse respiratory organisms studied to date and can utilize a variety of metals and metal(loid)s as terminal electron acceptors. These bacteria can potentially be used in bioremediation applications since the redox state of metals often influences both solubility and toxicity. Understanding molecular mechanisms by which metal transformations occur and the consequences of by-products that may be toxic to the organism and thus inhibitory to the overall process is significant to future applications for bioremediation. Here, we examine the ability of Shewanella oneidensis to catalyze the reduction of chelated cobalt. We describe an unexpected ramification of [Co(III)-EDTA] reduction by S. oneidensis: the formation of a toxic by-product. We found that [Co(II)-EDTA]2−, the product of [Co(III)-EDTA] respiration, inhibited the growth of S. oneidensis strain MR-1 and that this toxicity was partially abolished by the addition of MgSO4. We demonstrate that [Co(III)-EDTA] reduction by S. oneidensis requires the Mtr extracellular respiratory pathway and associated pathways required to develop functional Mtr enzymes (the c-type cytochrome maturation pathway) and ensure proper localization (type II secretion). The Mtr pathway is known to be required for a variety of substrates, including some chelated and insoluble metals and organic compounds. Understanding the full substrate range for the Mtr pathway is crucial for developing S. oneidensis strains as a tool for bioremediation.  相似文献   

17.
The dissimilatory metal reducing bacterium Shewanella oneidensis MR-1, known for its capacity of reducing iron and manganese oxides, has great environmental impacts. The iron oxides reducing process is affected by the coexistence of alternative electron acceptors in the environment, while investigation into it is limited so far. In this work, the impact of dimethyl sulphoxide (DMSO), a ubiquitous chemical in marine environment, on the reduction of hydrous ferric oxide (HFO) by S. oneidensis MR-1 was investigated. Results show that DMSO promoted HFO reduction by both wild type and ΔdmsE, but had no effect on the HFO reduction by ΔdmsB, indicating that such a promotion was dependent on the DMSO respiration. With the DMSO dosing, the levels of extracellular flavins and omcA expression were significantly increased in WT and further increased in ΔdmsE. Bioelectrochemical analysis show that DMSO also promoted the extracellular electron transfer of WT and ΔdmsE. These results demonstrate that DMSO could stimulate the HFO reduction through metabolic and genetic regulation in S. oneidensis MR-1, rather than compete for electrons with HFO. This may provide a potential respiratory pathway to enhance the microbial electron flows for environmental and engineering applications.  相似文献   

18.
19.
Exoelectrogenic bacteria (EEB) are capable of anaerobic respiration with diverse extracellular electron acceptors including insoluble minerals, electrodes and flavins, but the detailed electron transfer pathways and reaction mechanisms remain elusive. Here, we discover that CymA, which is usually considered to solely serve as an inner-membrane electron transfer hub in Shewanella oneidensis MR-1 (a model EEB), might also function as a reductase for direct reducing diverse nitroaromatic compounds (e.g. 2,4-dichloronitrobenzene) and azo dyes. Such a process can be accelerated by dosing anthraquinone-2,6-disulfonate. The CymA-based reduction pathways in S. oneidensis MR-1 for different contaminants could be functionally reconstructed and strengthened in Escherichia coli. The direct reduction of lowly polar contaminants by quinol oxidases like CymA homologues might be universal in diverse microbes. This work offers new insights into the pollutant reduction mechanisms of EEB and unveils a new function of CymA to act as a terminal reductase.  相似文献   

20.
Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp), thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM) investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号