首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In our aim to develop LacZ reporter probes with a good retention in LacZ expressing cells, we report the synthesis and preliminary evaluation of two carbon-11 labeled β-galactosyl triazoles 1-(β-d-galactopyranosyl)-4-(p-[11C]methoxyphenyl)-1,2,3-triazole ([11C]-6) and 1-(β-d-galactopyranosyl)-4-(6-[11C]methoxynaphthyl)-1,2,3-triazole ([11C]-13). The precursors for the radiolabeling and the non-radioactive analogues (6 and 13) were synthesized using straightforward ‘click’ chemistry. In vitro incubation experiments of 6 with β-galactosidase in the presence of o-nitrophenyl β-d-galactopyranoside (ONPG) showed that the triazolic compound was an inhibitor of β-galactosidase activity. Radiolabeling of both precursors was performed using [11C]methyl iodide as alkylating agent at 70 °C in DMF in the presence of a small amount of base. The log P values were ?0.1 and 1.4, respectively, for [11C]-6 and [11C]-13, the latter therefore being a good candidate for increased cellular uptake via passive diffusion. Biodistribution studies in normal mice showed a good clearance from blood for both tracers. [11C]-6 was mainly cleared via the renal pathway, while the more lipophilic [11C]-13 was excreted almost exclusively via the hepatobiliary system. Despite the lipophilicity of [11C]-13, no brain uptake was observed. Reversed phase HPLC analysis of murine plasma and urine revealed high in vivo stability for both tracers. In vitro evaluation in HEK-293T cells showed an increased cell uptake for the more lipophilic [11C]-13, however, there was no statistically higher uptake in LacZ expressing cells compared to control cells.  相似文献   

2.
2-(2',6'-Dimethoxy-[1,1'-biphenyl]-3-yl)-N,N-dimethylethanamine has been identified as a potent ligand for the serotonin 7 (5-HT(7)) receptor. In this study, we describe the synthesis, radiolabeling and in vivo evaluation of [(11)C]2-(2',6'-dimethoxy-[1,1'-biphenyl]-3-yl)-N,N-dimethylethanamine ([(11)C]Cimbi-806) as a radioligand for imaging brain 5-HT(7) receptors with positron emission tomography (PET). Precursor and reference compound was synthesized and subsequent (11)C-labelling with [(11)C]methyltriflate produced [(11)C]Cimbi-806 in specific activities ranging from 50 to 300 GBq/μmol. Following intravenous injection, brain uptake and distribution of [(11)C]Cimbi-806 was assessed with PET in Danish Landrace pigs. The time-activity curves revealed high brain uptake in thalamic and striatal regions (SUV ~2.5) and kinetic modeling resulted in distribution volumes (V(T)) ranging from 6 mL/cm(3) in the cerebellum to 12 mL/cm(3) in the thalamus. Pretreatment with the 5-HT(7) receptor antagonist SB-269970 did not result in any significant changes in [(11)C]Cimbi-806 binding in any of the analyzed regions. Despite the high brain uptake and relevant distribution pattern, the absence of appropriate in vivo blocking with a 5-HT(7) receptor selective compounds renders the conclusion that [(11)C]Cimbi-806 is not an appropriate PET radioligand for imaging the 5-HT(7) receptor in vivo.  相似文献   

3.
3-[18F]Fluoro-2-hydroxypropyl substituted compounds were synthesized and evaluated as novel 18F-labeled PET tracers for imaging Aβ plaque in a living brain. All compounds exhibited high binding affinities toward the synthetic Aβ1–42 aggregate and/or Alzheimer’s disease brain homogenate. In the microPET study with normal mice, the 3-[18F]fluoro-2-hydroxypropyl substituted compounds resulted in fast brain washout by reducing the lipophilicities of the compounds. Intriguingly, (S)-configured PET tracers, (S)-[18F]1b and (S)-[18F]1c, exhibited a 2.8 and 4.0-fold faster brain washout rate at a peak/30 min in the mouse brain than the corresponding (R)-configured PET tracers despite there being no meaningful difference in binding affinities toward Aβ plaque. A further evaluation of (S)-[18F]1c with healthy rhesus monkeys also revealed excellent clearance from the frontal cortex with ratios of 7.0, 16.0, 30.0 and 49.0 at a peak/30, 60, 90, and 120 min, respectively. These results suggest that (S)-[18F]1c may be a potential PET tracer for imaging Aβ plaque in a living brain.  相似文献   

4.
Measuring changes in β-cell mass in vivo during progression of diabetes mellitus is important for understanding the pathogenesis, facilitating early diagnosis, and developing novel therapeutics for this disease. However, a non-invasive method has not been developed. A novel series of mitiglinide derivatives (o-FMIT, m-FMIT and p-FMIT; FMITs) were synthesized and their binding affinity for the sulfonylurea receptor 1 (SUR1) of pancreatic islets were evaluated by inhibition studies. (+)-(S)-o-FMIT had the highest affinity of our synthesized FMITs (IC50 = 1.8 μM). (+)-(S)-o-[18F]FMIT was obtained with radiochemical yield of 18% by radiofluorination of racemic precursor 7, hydrolysis, and optical resolution with chiral HPLC; its radiochemical purity was >99%. In biodistribution experiments using normal mice, (+)-(S)-o-[18F]FMIT showed 1.94 ± 0.42% ID/g of pancreatic uptake at 5 min p.i., and decreases in radioactivity in the liver (located close to the pancreas) was relatively rapid. Ex vivo autoradiography experiments using pancreatic sections confirmed accumulation of (+)-(S)-o-[18F]FMIT in pancreatic β-cells. These results suggest that (+)-(S)-o-[18F]FMIT meets the basic requirements for an radiotracer, and could be a candidate positron emission tomography tracer for in vivo imaging of pancreatic β-cells.  相似文献   

5.
The reference standard (4-((5-chloro-4-(methylamino)pyrimidin-2-yl)amino)-3-methoxyphenyl)(morpholino)methanone (HG-10-102-01) and its precursor (4-((5-chloro-4-(methylamino)pyrimidin-2-yl)amino)-3-hydroxyphenyl)(morpholino)methanone (desmethyl-HG-10-102-01) were synthesized from 2,4,5-trichloropyrimide and 3-methoxy-4-nitrobenzoic acid with overall chemical yield 49% in four steps and 14% in five steps, respectively. The target tracer (4-((5-chloro-4-(methylamino)pyrimidin-2-yl)amino)-3-[11C]methoxyphenyl)(morpholino)methanone ([11C]HG-10-102-01) was prepared from the precursor desmethyl-HG-10-102-01 with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 45–55% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the specific activity (SA) at EOB was 370–1110 GBq/μmol with a total synthesis time of ~40-min from EOB.  相似文献   

6.
2-(4′-[18F]fluorophenyl)-1,3-benzothiazole was synthesized as a fluorine-18 labelled derivative of the Pittsburg Compound-B (PIB), which has known affinity for amyloid β and promising characteristics as tracer for in vivo visualisation of amyloid deposits in patients suffering from Alzheimer’s disease (AD). Both the nitro-precursor 2-(4′-nitrophenyl)-1,3-benzothiazole and the non-radioactive reference compound were synthesized using a 1-step synthesis pathway. Labelling was achieved by direct aromatic nucleophilic substitution of the nitro-precursor using [18F]fluoride by heating for 20 min at 150 °C and with a radiochemical yield of 38%. The reference compound showed high affinity for amyloid in an in vitro competition binding study using human AD brain homogenates (Ki = 9.0 nM) and fluorescence imaging of incubated transgenic APP mouse brain slices confirmed binding to amyloid plaques. A biodistribution study in normal mice showed a high brain uptake at 2 min pi (3.20% ID/g) followed by a fast washout (60 min pi: 0.21% ID/g). A dynamic μPET study was performed in a transgenic APP and normal WT mouse, but, similar to [11C]PIB, no difference was seen in tracer retention between both kind of mice. The new 18F-labelled 2-phenylbenzothiazole showed excellent preclinical characteristics comparable with those of the 11C-labelled PIB.  相似文献   

7.
A novel series of fluorinated 2-phenylindole derivatives were synthesized and evaluated as β-amyloid imaging probes for PET. The in vitro inhibition assay demonstrated that their binding affinities for Aβ1–42 aggregates ranged from 28.4 to 1097.8 nM. One ligand was labeled with 18F ([18F]1a) for its high affinity (Ki = 28.4 nM), which was also confirmed by in vitro autoradiography experiments on brain sections of transgenic mouse (C57BL6, APPswe/PSEN1, 11 months old, male). In vivo biodistribution experiments in normal mice showed that this radiotracer displayed high initial uptake (5.82 ± 0.51% ID/g at 2 min) into and moderate washout (2.77 ± 0.31% ID/g at 60 min) from the brain. [18F]1a could be developed as a promising new PET imaging probe for Aβ plaques although necessary modifications are still needed.  相似文献   

8.
The reference standards methyl 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate (10a), methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate (10b) and corresponding precursors 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylic acid (11a), methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylic acid (11b) were synthesized from methyl crotonate and 3-amino-4-methylbenzoic acid in multiple steps with moderate to excellent yields. The target tracer [11C]methyl 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate ([11C]10a) and [11C]methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate ([11C]10b) were prepared from their corresponding precursors with [11C]CH3OTf under basic condition through O-[11C]methylation and isolated by a simplified solid-phase extraction (SPE) method in 50–60% radiochemical yields at end of bombardment (EOB) with 185–555 GBq/μmol specific activity at end of synthesis (EOS).  相似文献   

9.
10.
The synthesis and in vivo evaluation of (11)C -labeled uric acid ([(11)C]1), a potential imaging agent for the diagnosis of urate-related life-style diseases, was performed using positron emission tomography (PET) image analysis. First, the synthesis of [(11)C]1 was achieved by reacting 5,6-diaminouracil (2) with (11)C-labeled phosgene ([(11)C]COCl(2)). The radiochemical yield of [(11)C]1 was 37±7% (decay-corrected based on [(11)C]COCl(2)) with specific radioactivities of 96-152GBq/μmol at the end of synthesis (n=6). The average time of radiosynthesis from the end of bombardment, including formulation, was about 30min with >98% radiochemical purity. Second, the synthetic approach to [(11)C]1 was optimized using 5,6-diaminouracil sulfate (3) with [(11)C]COCl(2) in the presence of 1,8-bis(dimethylamino)naphthalene. [(11)C]1 was synthesized in 36±6% radiochemical yield, 89-142GBq/μmol of specific radioactivities, and 98% radiochemical purity by this method (n=5). This allowed the synthesis of [(11)C]1 to be carried out repeatedly and the radiochemical yield, specific radioactivities, average time of synthesis, and radiochemical purity of [(11)C]1 were similar to those obtained using 2. PET studies in rats showed large differences in the accumulation of radioligand in the limbs under normal and hyperuricemic conditions. Thus, an efficient and convenient automated synthesis of [(11)C]1 has been developed, and preliminary PET evaluation of [(11)C]1 confirmed the increased accumulation of radioactivity in the limbs of a rat model of hyperuricemia.  相似文献   

11.
A series of chaclone derivatives containing an indole moiety were evaluated in competitive binding assays with Aβ1-42 aggregates versus [125I]IMPY. The affinity of these compounds ranged from 4.46 to >1008 nM, depending on the substitution on the phenyl ring. Fluorescent staining in vitro showed that one compound with a N,N-dimethylamino group intensely stained Aβ plaques within brain sections of AD transgenic mice. The radioiodinated probe [125I]-(E)-3-(1H-indol-5-yl)-1-(4-iodophenyl)prop-2-en-1-one, [125I]4, was prepared and autoradiography in sections of brain tissue from an animal model of AD showed that it labeled Aβ plaques specifically. However, experiments with normal mice indicated that [125I]4 exhibited a low uptake into the brain in vivo (0.41% ID/g at 2 min). Additional chemical modifications of this indole-chalcone structure may lead to more useful imaging agents for detecting β-amyloid plaques in the brains of AD patients.  相似文献   

12.
We synthesized several esters of R(?)-N-alkyl-11-hydroxy-2-methoxynoraporphines, assessed their affinities at dopamine D1 and D2 receptors in rat forebrain tissue and quantified their effects on motor activity in normal adult male rats. Tested compounds displayed moderate to high affinities to D2 receptors but low affinities to D1 receptors. The most D2-potent (Ki = 18.9 nM) and selective novel agent (>529-fold vs D1 sites) was R(?)-2-methoxy-11-acetyloxy-N-n-propylnoraporphine (compound 4b). At moderate doses, the compound proved to have prolonged behavioral locomotor activity.  相似文献   

13.
The syntheses and SAR of new series of β-amyloid binding agents are reported. The effort to optimize signal-to-background ratios for these ligands are described. Compounds 8, 21 and 30 displayed desirable lipophilicity and pharmacokinetic properties. Compounds 8 and 21 were evaluated with in vitro autoradiographic studies and in vivo in APP/PS1 transgenic mice. It is shown that it was possible to increase the signal-to-background ratios compared to PIB 1, as demonstrated by compounds 8 and 21.  相似文献   

14.
We have prepared and studied six new analogs of 16α-fluoroestradiol (FES): 17α- and 17β-ethynyl-FES (7 [FEES]and 7a), and the 11β-ethyl (8 and 8a) and 11β-methoxy (9 and 9a) derivatives, novel estrogen receptor-based PET imaging agents. The relative binding affinity (RBA) for the estrogen receptor (ER) versus FES is increased for 7, 9 and 9a but decreased for 7a, 8 and 8a. All six analogs have been labeled in the 16α position with 18F by the nucleophilic displacement of the corresponding 16β-trifluoromethanesulfonate with nBu4N18F. Subsequent ethynylation with lithium trimethylsilylacetylide yielded the FEES analogs (total synthesis time: 120 min; effective specific activity: 200–2400 Ci/mmol). Selective uptake in the uterus was high for [18F)7, [18F]8, [18F]9 and [18F]9a (% ID/g values at 1 h: 11.2, 12.9, 9.9 and 8.3, respectively), while uptake was effectively blocked by coinjection of an excess of unlabeled estradiol. The FEES analogs, [18F]7, [18F]8 and [18F]9, exhibited the highest selectivity, in terms of target (uterus)-to-blood ratios, ever seen amongst estrogen radiopharmaceuticals, 154, 145 and 169, respectively. The analogs [18F]7a and [18F]8a displayed no uptake in the uterus, consistent with their low RBAs. Metabolism studies revealed that most of the uterine activity is unmetabolized while the blood exhibits a rapid and subsequently sustained mixture of metabolites. The muscle shows a metabolic profile intermediate to the uterus and blood. These analogs provide an array of desirable characteristics for the optimal PET imaging of ER-rich target tissues.  相似文献   

15.
Wang M  Xu L  Gao M  Miller KD  Sledge GW  Zheng QH 《Steroids》2012,77(8-9):864-870
Steroid sulfatase (STS) catalyzes the hydrolysis of steroid sulfates to estrones, the main source of estrogens in tumors. Carbonic anhydrase II (CAII) is highly expressed in red blood cells through a coordination of the monoanionic form of the sulfamate moiety to the zinc atom in the enzyme active site, and CAII is highly expressed in several tumors. 2-Methoxy-3,17β-O,O-bis(sulfamoyl)estradiol (5) is a dual-function STS-CAII inhibitor inhibited STS with 39 nM IC(50) value selectively over CAII with 379 nM IC(50) value. This compound exhibited potent antiproferative activity with mean graph midpoint value of 87 nM in the NCI 60-cell-line panel, and antiangiogenic in vitro and in vivo activity in an early-stage Lewis lung model as well. The compound has been recently developed as a multitargeted anticancer agent. Both STS and CAII are over-expressed in cancers and have become attractive targets for cancer treatment and molecular imaging of cancer. Here we report the first design and synthesis of 2-[(11)C]methoxy-3,17β-O,O-bis(sulfamoyl)estradiol ([(11)C]5) as a new potential imaging agent for biomedical imaging technique positron emission tomography (PET) to image STS in cancers. The authentic standard 5 was synthesized from 17β-estradiol by published procedures in 5 steps with 40% overall chemical yield. The precursor 2-hydroxy-3,17β-O,O-bis(sulfamoyl)estradiol (14a) for radiolabeling was synthesized from 17β-estradiol in 10 steps with 5% overall chemical yield. The target tracer [(11)C]5 was prepared from the precursor 14a with [(11)C]CH(3)OTf through O-[(11)C]methylation and isolated by HPLC combined with solid-phase extraction (SPE) purification in 40-50% radiochemical yields based on [(11)C]CO(2) and decay corrected to end of bombardment (EOB), with 370-740 GBq/μmol specific activity at EOB.  相似文献   

16.
[11C]Dimebon (2-[11C]methyl-8-methyl-5-(2-(6-methylpyridin-3-yl)ethyl)-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole), a new potential PET agent for imaging of Alzheimer’s disease and Huntington’s disease, was prepared by N-[11C]methylation of desmethyl-Domebon precursor with [11C]CH3OTf and purified with a semi-preparative HPLC method in 30–40% decay corrected radiochemical yield and 222–296 GBq/μmol specific activity at EOB. The measured lipophilicity coefficient (Log P) value of [11C]Dimebon was 2.53.  相似文献   

17.
The synthesis and SAR of new β-amyloid binding agents are reported. Evaluation of important properties for achieving good signal-to-background ratio is described. Compounds 27, 33, and 36 displayed desirable lipophilic and pharmacokinetic properties. Compound 27 was further evaluated with autoradiographic studies in vitro on human brain tissue and in vivo in Tg2576 mice. Compound 27 showed an increased signal-to-background ratio compared to flutemetamol 4, indicating its suitability as PET ligand for β-amyloid deposits in AD patients. The preparation of the corresponding (18)F-labeled PET radioligand of compound 27 is presented.  相似文献   

18.
IntroductionCurcumin is a neuroprotective compound that inhibits the formation of amyloid oligomers and fibrils and binds to β-amyloid plaques in Alzheimer’s disease (AD). We aimed to synthesize an 18F-labeled curcumin derivate ([18F]4) and to characterize its positron emission tomography (PET) tracer-binding properties to β-amyloid plaques in a transgenic APP23 mouse model of AD.MethodsWe utilized facile one-pot synthesis of [18F]4 using nucleophilic 18F-fluorination and click chemistry. Binding of [18F]4 to β-amyloid plaques in the transgenic APP23 mouse brain cryosections was studied in vitro using heterologous competitive binding against PIB. [18F]4 uptake was studied ex vivo in rodents and in vivo using PET/computed tomography of transgenic APP23 and wild-type control mice.ResultsThe radiochemical yield of [18F]4 was 21 ± 11%, the specific activity exceeded 1 TBq/μmol, and the radiochemical purity exceeded 99.3% at the end of synthesis. In vitro studies of [18F]4 with the transgenic APP23 mouse revealed high β-amyloid plaque binding. In vivo and ex vivo studies demonstrated that [18F]4 has fast clearance from the blood, moderate metabolism but low blood–brain barrier (BBB) penetration.Conclusions[18F]4 was synthesized in high yield and excellent quality. In vitro studies, metabolite profile, and fast clearance from the blood indicated a promising tracer for Aβ imaging. However, [18F]4 has low in vivo BBB penetration and thus further studies are needed to reveal the reason for this and to possibly overcome this issue.  相似文献   

19.
The reference standards methyl 3-((2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoate (5a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)-3-methoxybenzamide (5c), and their corresponding desmethylated precursors 3-((2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoic acid (6a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)-3-hydroxybenzamide (6b), were synthesized from 5-amino-2,2-difluoro-1,3-benzodioxole and 3-substituted benzoic acids in 5 and 6 steps with 33% and 11%, 30% and 7% overall chemical yield, respectively. Carbon-11-labeled casein kinase 1 (CK1) inhibitors, [11C]methyl 3-((2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoate ([11C]5a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)-3-[11C]methoxybenzamide ([11C]5c), were prepared from their O-desmethylated precursor 6a or 6b with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 40–45% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370–740?GBq/μmol with a total synthesis time of ~40-min from EOB.  相似文献   

20.
Wang M  Gao M  Miller KD  Zheng QH 《Steroids》2011,76(12):1331-1340
The translocator protein 18 kDa (TSPO) is an attractive target for molecular imaging of neuroinflammation and tumor progression. [18F]PBR06, a fluorine-18 labeled form of PBR06, is a promising PET TSPO radioligand originally developed at NIMH. [11C]PBR06, a carbon-11 labeled form of PBR06, was designed and synthesized for the first time. The standard PBR06 was synthesized from 2,5-dimethoxybenzaldehyde in three steps with 71% overall chemical yield. The radiolabeling precursor desmethyl-PBR06 was synthesized from 2-hydroxy-5-methoxybenzaldehyde in five steps with 12% overall chemical yield. The target tracer [11C]PBR06 was prepared by O-[11C]methylation of desmethyl-PBR06 with [11C]CH3OTf in CH3CN at 80 °C under basic condition and isolated by HPLC combined with SPE purification with 40–60% decay corrected radiochemical yield and 222–740 GBq/μmol specific activity at EOB. On the similar grounds, [18F]PBR06 was also designed and synthesized. The previously described Br-PBR06 precursor was synthesized from 2,5-dimethoxybenzaldehyde in two steps with 78% overall chemical yield. A new radiolabeling precursor tosyloxy-PBR06, previously undescribed tosylate congener of PBR06, was designed and synthesized from ethyl 2-hydroxyacetate, 4-methylbenzene-1-sulfonyl chloride, and N-(2,5-dimethoxybenzyl)-2-phenoxyaniline in four steps with 50% overall chemical yield. [18F]PBR06 was prepared by the nucleophilic substitution of either new tosyloxy-PBR06 precursor or known Br-PBR06 precursor in DMSO at 140 °C with K[18F]F/Kryptofix 2.2.2 for 15 min and HPLC combined with SPE purification in 20–60% decay corrected radiochemical yield, >99% radiochemical purity, 87–95% chemical purity, and 37–222 GBq/μmol specific activity at EOB. Radiosynthesis of [18F]PBR06 using new tosylated precursor gave similar radiochemical purity, and higher specific activity, radiochemical yield and chemical purity in comparison with radiosynthesis using bromine precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号