首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new flavonol glycosides, nervilifordizins A–C (13), were isolated from the whole plant of Nervilia fordii. Their structures were elucidated as rhamnazin 3-O-β-d-xylopyranosyl-(1→4)-β-d-glucopyranoside (1), rhamnazin 3-O-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside (2) and rhamnazin 3-O-β-d-xylopyranosyl-(1→4)-β-d-glucopyranoside-4′-O-β-d-glucopyranoside (3) on the basis of extensive spectroscopic analysis, including HSQC, HMBC, 1H–1H COSY, and chemical evidences.  相似文献   

2.
Ten flavone compounds, including three new flavonoid glycosides, were isolated from defatted rapeseed, and their protective antioxidant effect on H2O2-induced oxidative damage in human umbilical vein endothelial cells (ECV-304) was investigated. Three new flavonoid glycosides were identified as kaempferol-3-O-[(6-O-sinapoyl)-β-d-glucopyranosyl-(1  2)-β-d-glucopyranoside]-7-O-β-d-glucopyranoside (8), kaempferol-3,7-di-O-β-d-glucopyranoside-4'-O-(6-O-sinapoyl)-β-d-glucopyranoside (9), and kaempferol-3-O-[(3-O-sinapoyl)-β-d-glucopyranosyl-(1  2)-β-d-glucopyranoside]-7-O-β-d-glucopyranoside (10). The protective effects of all of the isolated compounds on H2O2-induced oxidative damage were assessed, and the activities of superoxide dismutase (SOD) and lactate dehydrogenase (LDH) were measured. All of compounds had a protective effect on H2O2-induced oxidative damage in ECV-304 cells and the presence of a substituted sinapoyl group and its position in the structures were used to elucidate the activity differences.  相似文献   

3.
One new bithiophenes, 5-(but-3-yne-1,2-diol)-5′-hydroxy-methyl-2,2′-bithiophene (2), two new polyacetylenic glucosides, 3-O-β-d-glucopyranosyloxy-1-hydroxy-4E,6E-tetradecene-8,10,12-triyne (8), (5E)-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-β-d-glucopyranoside (9), six new terpenoid glycosides, rel-(1S,2S,3S,4R,6R)-1,6-epoxy-menthane-2,3-diol-3-O-β-d-glucopyranoside (10), rel-(1S,2S,3S,4R,6R)-3-O-(6-O-caffeoyl-β-d-glucopyranosyl)-1,6-epoxy menthane-2,3-diol (11), (2E,6E)-2,6,10-trimethyl-2,6,11-dodecatriene-1,10-diol-1-O-β-d-glucopyranoside (12), 3β,16β,29-trihydroxy oleanane-12-ene-3-O-β-d-glucopyranoside (13), 3,28-di-O-β-d-glucopyranosyl-3β,16β-dihydroxy oleanane-12-ene-28-oleanlic acid (14), 3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl oleanlic-18-ene acid-28-O-β-d-glucopyranoside (15), along with fifteen known compounds (1, 37, and 1624), were isolated from the aerial parts of Eclipta prostrata. Their structures were established by analysis of the spectroscopic data. The isolated compounds 19 were tested for activities against dipeptidyl peptidase IV (DPP-IV), compound 7 showed significant antihyperglycemic activities by inhibitory effects on DPP-IV in human plasma in vitro, with IC50 value of 0.51 μM. Compounds 1024 were tested in vitro against NF-κB-luc 293 cell line induced by LPS. Compounds 12, 15, 16, 19, 21, and 23 exhibited moderate anti-inflammatory activities.  相似文献   

4.
Three new triterpene glycosides ursan-3β,19α,22β-triol-3-O-β-d-glucopyranosyl (2′→1″)-β-d-glucopyranoside (1), ursan-3α,11β-diol-3-O-α-d-glucopyranosyl-(6′→1″)-α-d-glucopyranosyl-(6″→1‴)-α-d-glucopyranosyl-(6‴→1‴′)-α-d-glucopyranoside (2) and lanost-5,24-dien-3β-ol-3-O-β-d-glucopyranosyl-(6′→1″)-β-d-glucopyranosyl-(6″→1‴)-β-d-glucopyranoside (3), together with one known compound were isolated and identified from the marc of red ginseng. Their structures were elucidated by spectroscopic data analysis. Compounds (13) were investigated for anti-inflammatory effects using the RAW 264.7 macrophage cell line. In the cell proliferation assay, lipopolysaccharide stimulation decreased cell proliferation of RAW 264.7 macrophage cells, but the suppression of cell proliferation was significantly protected by treatment with compounds 2 and 3. Compounds 2 and 3 had a suppressive effect on the production of nitric oxide (NO), and they inhibited mRNA expression of proinflammatory mediators such as inducible nitric oxide synthase, and cyclooxygenase-2, and proinflammatory cytokines such as two interleukins and tumor necrosis factor-α. These findings suggest that compounds 2 and 3 have potential anti-inflammatory activities.  相似文献   

5.
Four new and three known oleanane-type saponins have been isolated from the methanolic extract of Phryna ortegioides, a monotypic and endemic taxon of Caryophyllaceae.The structures of the new compounds were determined as gypsogenic acid 28-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-β-d-glucopyranosyl ester (1), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (2), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-]-β-d-glucopyranosyl ester (3), 3-O-α-l-arabinofuranosyl-16α-hydroxyolean-12-en-23,28-dioic acid-28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (4). Their structures were established by a combination of one- and two-dimensional NMR techniques, and mass spectrometry. Noteworthy, none of isolated compounds possesses as aglycone moiety gypsogenin, considered a marker of Caryophyllaceae family.The cytotoxic activity of the isolated compounds was evaluated against three cancer cell lines including A549 (human lung adenocarcinoma), A375 (human melanoma) and DeFew (human B lymphoma) cells. Only compound 6 showed a weak activity against A375 and DeFew cell lines with IC50 values of 77 and 52 μM, respectively. None of the other tested compounds, in a range of concentrations between 12.5 and 100 μM, caused a significant reduction of the cell number.  相似文献   

6.
Dried aerial parts of Tetragonia tetragonoides were extracted with 70% EtOH, and the evaporated residue was successively separated into EtOAc, n-BuOH, and H2O fractions. As a result of repeated SiO2, ODS, and Sephadex LH-20 column chromatography, four new 6-methoxyflavonol glycosides (24, 8) along with four known ones (1, 57) were isolated. Several spectroscopic data led to determination of chemical structures for four new 6-methoxyflavonol glycosides (24, 8) and four known ones, 6-methoxykaempferol 3-O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl-7-O-(6‴′-(E)-caffeoyl)-β-d-glucopyranoside (1), 6-methoxyquercetin (5), 6-methoxykaempferol (6), and 6-methoxykaempferol 7-O-β-d-glucopyranoside (7). Methoxyflavonol glycosides 28 also have never been reported from T. tetragonoides in this study. 6-Methoxyflavonols 5 and 6 showed high radical scavenging potential in DPPH and ABTS test. Also, all compounds showed significant anti-inflammatory activities such as reduction of NO and PGE2 formation and suppression of TNF-α, IL-6, IL-1β, iNOS, and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. In general, the aglycones exhibited higher activity than the glycosides. In addition, quantitative analysis of 6-methoxyflavonols in the T. tetragonoides aerial parts extract was conducted through HPLC.  相似文献   

7.
Three new phenylethanoid glycosides, 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside A, 1), 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-glucopyranosyl-(1  4)-β-d-allopyranoside (hodgsonialloside B, 2) and 2-(3-methoxy-4-hydroxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside C, 3) were isolated from the leaves of Magnolia hodgsonii in addition to six known compounds, tyrosol 4-O-β-d-xylopyranosyl-(1  6)-β-d-glucopyranoside (4), kaempferol 3-O-neohesperidoside (5), kaempferol 3-O-rutinoside (6), kaempferol 3-O-α-l-rhamnopyranosyl-(1  2)-[α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside (7), (+)-syringaresinol O-β-d-glucopyranoside (8), and oblongionoside C (9). The structure elucidation of these compounds was based on analyses of physical and spectroscopic data including 1D and 2D NMR experiments.  相似文献   

8.
A phytochemical investigation of the aerial parts of Brassica rapa L. ‘hidabeni’, turnip resulted in the isolation of three new chalcone glycosides, 4′-O-β-d-glucopyranosyl-4-hydroxy-3′-methoxychalcone (1), 4′-O-β-d-glucopyranosyl-3′,4-dimethoxychalcone (2) and 4,4′-di-O-β-d-glucopyranosyl-3′-methoxychalcone (3) along with three known glycosides. The structures of the three newly isolated chalcone glycosides were elucidated on the basis of 1D and 2D NMR and mass spectroscopy.  相似文献   

9.
《Phytochemistry》1986,25(6):1419-1422
Two new triterpene glycosides isolated from the root bark Guettarda angelica were proven to be quinovic acid-3β-O-[β-d-glucopyranosyl-(1 → 3)-α-l-rhamnopyranoside] and quinovic acid-3β-O-β-d-glucopyranosyl-(28 → 1)-β-d-glucopyranosyl ester. In addition quinovic acid and two known glycoside derivatives (quinovic acid-3β-O-β-d-glucopyranoside and quinovic acid-3β-O-α-l-rhamnopyranoside) were isolated. The structures were elucidated by spectroscopic analysis of the peracetyl methyl ester derivatives.  相似文献   

10.
Antibacterial phenolic components from Eriocaulon buergerianum   总被引:1,自引:0,他引:1  
Fang JJ  Ye G  Chen WL  Zhao WM 《Phytochemistry》2008,69(5):1279-1286
Five phenolic components, 1,3,6-trihydroxy-2,5,7-trimethoxyxanthone (1), 7,3′-dihydroxy-5,4′,5′-trimethoxyisoflavone (2), toralactone-9-O-β-d-glucopyranoside (3), patuletin-3-O-[2-O-E-feruloyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside] (4), patuletin-3-O-[β-d-glucopyranosyl-(1 → 3)-2-O-E-caffeoyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside] (5), along with 19 known compounds were isolated from Eriocaulon buergerianum (Eriocaulaceae). Their structures were determined by spectroscopic and chemical methods. All 24 isolated compounds were tested against the pathogenic bacteria Staphylococcus aureus (ATCC 25923); as a result, 10 compounds were found to exhibit antibacterial activity with MICs ranging from 32 to 256 μg/ml.  相似文献   

11.
Two new tridesmosidic cycloartane-type triterpene glycosides (1 and 2) were isolated from the methanolic extract of the roots of Astragalus brachycalyx FISCHER (A. brachycalyx) along with ten (3–12) known cycloartane-type triterpene glycosides. Structures of the new compounds were established as 3-O-β-d-xylopyranosyl-6-O-β-d-glucopyranosyl-16-O-β-d-glucopyranosyl-3β,6α,16β,24(S)-25-pentahydroxycycloartane (1), 3-O-[α-l-arabinopyranosyl-(1→2)-β-d-xylopyranosyl]-6-O-β-d-glucopyranosyl-16-O-β-d-glucopyranosyl-3β,6α,16β,24(S)-25-pentahydroxycycloartane (2), by using 1D and 2D-NMR techniques and mass spectrometry.In vitro immunomodulatory effects and hemolytic activities of the new saponins (1 and 2) and acetylated form of 1 (1a) were studied together with the BuOH and MeOH extracts of Astragalus brachycalyx. The results have proven that tridesmosidic Astragalus cycloartanes are noteworthy immunomodulatory compounds via induction of cytokine production, namely IL-2 and IFN-γ. The test compounds also resulted slight hemolysis at very high doses substantiating a safer profile compared to the positive control QS-21.  相似文献   

12.
From the leaves of Cleome viscosa L., two new flavonol glycosides, named visconoside A (1) and visconoside B (2), together with six known flavonol glycosides, vincetoxicoside A (3), vincetoxicoside B (4), kaempferitrin (5), kaempferide 3-O-β-d-glucopyranoside 7-O-α-l-rhamnopyranoside (6), kaempferol 3-O-β-d-glucopyranoside 7-O-α-l-rhamnopyranoside (7), and isorhamnetin 3-O-β-d-glucopyranoside (8) were isolated by various chromatography methods. Its chemical structure was elucidated by IR, UV, HR-ESI-MS, NMR 1D and 2D experiments and compared with literatures.  相似文献   

13.
Two new furostanol glycosides, trigofoenosides F and G, have been isolated as their methyl ethers from the methanolic extract of Trigonella foenum-graecum seeds (Leguminosae). The structures of the original glycosides have been determined as (25R)-furost-5-en-3β,22,26-triol, 3-O-α-l-rhamnopyranosyl (1 → 2)β-d-glucopyranosyl (1 → 6)β-d-glucopyranoside; 26-O-β-d-glucopyranoside and (25R)-furost-5en-3β,22,26-triol, 3-O-α-L-rhamnopyranosyl (1 → 2) [β-d-xylopyranosyl (1 → 4)]β-d-glucopyranosyl (1 → 6)β-d-glucopyranoside; 26-O-β-d-glucopyranoside, respectively.  相似文献   

14.
Lu Y  Luo J  Huang X  Kong L 《Steroids》2009,74(1):95-628
Two novel C-22 steroidal lactone saponins, namely solanolactosides A, B (1, 2) and two new spirostanol glycosides, namely torvosides M, N (3, 4) were isolated from ethanol extract of aerial parts of Solanum torvum. Their structures were characterized as solanolide 6-O-[α-l-rhamnopyranosyl-(1 → 3)-O-β-d-quinovopyranoside] (1), solanolide 6-O-[β-d-xylopyranosyl-(1 → 3)-O-β-d-quinovopyranoside] (2), yamogenin 3-O-[β-d-glucopyranosyl-(1 → 6)-O-β-d-glucopyranoside] (3) and neochlorogenin 3-O-[β-d-glucopyranosyl-(1 → 6)-O-β-d-glucopyranoside] (4) on the basis of spectroscopic analysis. The cytotoxicities of the saponins (1-4) were evaluated in vitro against a panel of human cancer cell lines. Compounds 3 and 4 showed significant cytotoxic activity with the cell lines.  相似文献   

15.
An ethanol extract of the aerial parts of Delphinium gracile DC. yielded five flavonol glycosides quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-caffeoyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (1), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (2), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(Z-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (3), kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (4) kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (5) in addition to 4-(β-d-glucopyranosyloxy)-6-methyl-2H-pyran-2-one (6) and rutin. Structures were elucidated by spectroscopic methods.  相似文献   

16.
Four cycloartane- (hareftosides A–D) and oleanane-type triterpenoids (hareftoside E) were isolated from Astragalus hareftae along with fifteen known compounds. Structures of the compounds were established as 3,6-di-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (1), 3,6,24-tri-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (2), 3-O-β-d-xylopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),25(S)-epoxycycloartane (3), 16-O-β-d-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane (4), 3-O-[β-d-xylopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucuronopyranosyl]-soyasapogenol B (5) by the extensive use of 1D- and 2D-NMR experiments along with ESI-MS and HR-MS analyses.  相似文献   

17.
Three new iridoid glycosides, 6″-O-trans-caffeoylgenipin gentiobioside (1), genipin 1-O-β-d-apiofuranosyl (1→6)-β-d-glucopyranoside (2), genipin 1-O-α-d-xylopyranosyl (1→6)-β-d-glucopyranoside (3), three new monocyclic monoterpenoids, jasminoside R (4), jasminoside S (5), jasminoside T (6), together with nine known iridoid glycosides (715) and three crocetin glycosides (1618), were isolated from the fruit of Gardenia jasminoides. Their chemical structures were established mainly by 1D and 2D NMR techniques and mass spectrometry. Inhibitory effects of the isolated compounds on nitric oxide production in lipopolysaccaride-activated macrophages were evaluated. Compounds 8 and 18 showed strong inhibitory activity on NO production with IC50 values of 11.14 ± 0.67 and 5.99 ± 0.54 μM, respectively.  相似文献   

18.
Three undescribed flavonol triglycosides, rhamnetin-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→6)]-β-d-glucopyranoside (champaluangoside A), rhamnetin-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-galactopyranoside (champaluangoside B) and rhamnocitrin-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-glucopyranoside (champaluangoside C), were isolated from Magnolia utilis in addition to eleven known compounds; quercetrin-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-glucopyranoside, oxytroflavoside G, magnoloside A, magnoloside M, magnoloside D, manglieside A, manglieside B, 1,2-di-O-β-d-glucopyranosyl-4-allylbebzene, syringrin, benzyl β-d-allopyranoside and (+)-syringaresinol-O-β-d-glucopyranoside. The structure elucidation of these compounds was based on analyses of physical and spectroscopic data.  相似文献   

19.
Three new phenolic glycosides 2-(3-O-β-d-glucopyranosyl-4-hydroxyphenyl) ethanol 1-O-β-d-glucopyranoside (1), 2-(4-O-β-d-fructopyranosylphenyl) ethanol 1-O-β-d-galactopyranoside (2) and 3-methoxy-4-O-β-d-allopyranosyl acetophenone (3), along with nine known compounds (4–12), were isolated from the ethanol extract of the whole plant of Aconitum tanguticum (Maxim.) Stapf. Their structures were elucidated by analysis of spectroscopic data including 1D-, 2D-NMR and HRESIMS, and the reported literature data comparison. All the compounds were evaluated for their potential anti-inflammatory effects by the inhibition of TNF-α production on LPS-stimulated RAW264.7 macrophages. Compounds 1, 3, 5 and 79 showed certain inhibition activity and their IC50 values were 38.18, 27.64, 3.25, 84.45, 12.76 and 18.44 μg/mL, respectively.  相似文献   

20.
Five triterpenoid saponins isolated from the flowers, the mature fruits and the leaves of Fatsia japonica were identified as 3-O-[β-d-glucopyranosyl(1→4)-β-d-glucopyranosyl]-hederagenin (1), 3-O-[β-d-glucopyranosyl-(1→4)-α-l-arabinopyranosyl]-oleanolic acid (2), 3-O-[α-l-arabinopyranosyl]-hederagenin (3), 3-O-[β-d-glucopyranosyl]-hederagenin (4) and 3-O-[β-d-glucopyranosyl(1→4)-α-l-arabinopyranosyl]-hederagenin (5). The saponins 1 and 2 are new, naturally occurring, triterpenoid saponins. The distribution of the five saponins in three parts of the plant was investigated. Saponins 2, 3 and 5 were present in the flowers, saponins 1, 3, 4 and 5 were in the mature fruits and saponins 2, 3, 4 and 5 were in the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号