首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preventing viral entry into cells is a recognized approach for HIV therapy and has attracted attention for use against the hepatitis C virus (HCV). Recent reports described the activity of (−)-epigallocatechin gallate (EGCG) as an inhibitor of HCV entry with modest potency. EGCG is a polyphenolic natural product with a wide range of biological activity and unfavorable pharmaceutical properties. In an attempt to identify more drug-like EGCG derivatives with improved efficacy as HCV entry inhibitors, we initiated structure–activity investigations using semi-synthetic and synthetic EGCG analogs. The data show that there are multiple regions in the EGCG structure that contribute to activity. The gallate ester portion of the molecule appears to be of particular importance as a 3,4-difluoro analog of EGCG enhanced potency. This derivative and other active compounds were shown not to be cytotoxic in Huh-7 cell culture. These data suggest that more potent, non-cytotoxic EGCG analogs can be prepared in an attempt to identify more drug-like candidates to treat HCV infection by this mechanism.  相似文献   

2.
Cao P  Raleigh DP 《Biochemistry》2012,51(13):2670-2683
Islet amyloid polypeptide (IAPP, amylin) is responsible for amyloid formation in type 2 diabetes and in transplanted islets. The flavanol (-)-epigallocatechin-3-gallate [EGCG; (2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate] is an effective inhibitor of amyloid formation by IAPP; however, the interactions required for the inhibition of IAPP amyloid formation and for the remodeling of amyloid fibers are not known. A range of features have been proposed to be critical for EGCG protein interactions, including interactions with aromatic residues, interactions with amino groups, or sulfhydryls. Using a set of IAPP analogues, we show that none of these are required. Studies in which EGCG is added to the lag phase of amyloid formation shows that it interacts with intermediates as well as with monomers and amyloid. The features of EGCG required for effective inhibition were examined. The stereoisomer of EGCG, (-)-gallocatechin gallate (GCG), is an effective inhibitor, although less so than EGCG. Removing the gallate ester moiety leads to EGC which is a less effective inhibitor. Removing only the 3-hydroxyl group of the trihydroxyphenyl ring leads to a compound that has more pronounced effects on the lag phase than EGC but is less effective at reducing the amount of amyloid. Elimination of both the 3-hydroxy group and the gallate ester results in loss of activity. EGCG remodels IAPP amyloid fibers but does not fully resolubilize them to unstructured monomers, and the remodeling is not the reverse of amyloid assembly. The ability of the compounds to remodel IAPP amyloid closely follows their relative ability to inhibit amyloid formation.  相似文献   

3.
We previously reported 4-(3-((6-bromonaphthalen-2-yl)oxy)-2-hydroxypropyl)-N,N-dimethylpiperazine-1-sulfonamide (1) as a novel heat shock protein 90 inhibitor with moderate activity. In our ongoing efforts for the discovery of Hsp90 modulators we undertake structural investigations on 1. Series of the titled compound were designed, synthesized and evaluated. We have found that compounds with a hydroxyl group at C-4 of the aryl ring on the piperazine moiety possess Hsp90 inhibition properties. Compound 6f with improved activity could be further developed and optimized as Hsp90 inhibitor.  相似文献   

4.
High-throughput screening of a library of diverse molecules has identified the 1,4-naphthoquinone scaffold as a new class of Hsp90 inhibitors. The synthesis and evaluation of a rationally-designed series of analogues containing the naphthoquinone core scaffold has provided key structure–activity relationships for these compounds. The most active inhibitors exhibited potent in vitro activity with low micromolar IC50 values in anti-proliferation and Her2 degradation assays. In addition, 3g, 12, and 13a induced the degradation of oncogenic Hsp90 client proteins, a hallmark of Hsp90 inhibition. The identification of these naphthoquinones as Hsp90 inhibitors provides a new scaffold upon which improved Hsp90 inhibitors can be developed.  相似文献   

5.
Hsp90 has long been recognized as an attractive and crucial molecular target for cancer therapy. Gambogic acid (GA), the main active compound of Gamboge hanburyi, has been reported as a natural inhibitor of Hsp90. Here, we present the structure–activity relationship of Garcinia xanthones analogues as Hsp90 inhibitors and identify that compound 25, with a simplified skeleton, had an improved inhibitory effect toward Hsp90. Compound 25 inhibited the ATPase activity of Hsp90 with an IC50 value of 3.68 ± 0.18 μM. It also exhibited potent antiproliferative activities in some solid tumor cells. In SK-BR-3 cells with high Hsp90 expression, compound 25 induced the degradation of Hsp90 client proteins including Akt and Erk1/2 without causing the heat shock response. Additionally, compound 25 inhibited angiogenesis in HUVEC cells through Hsp90 regulation of the HIF-1α pathway. These results demonstrate that compound 25 as an Hsp90 inhibitor with a new structure could be further studied for the development of tumor therapy.  相似文献   

6.
In the last decade the heat shock protein 90 (Hsp90) has emerged as a major therapeutic target and many efforts have been dedicated to the discovery of Hsp90 inhibitors as new potent anticancer agents. Here we report the identification of a novel class of Hsp90 inhibitors by means of a biophysical FAXS-NMR based screening of a library of fragments. The use of X-ray structure information combined with modeling studies enabled the fragment evolution of the initial triazoloquinazoline hit to a class of compounds with nanomolar potency and drug-like properties suited for further lead optimization.  相似文献   

7.
Sulforaphane [1-isothiocyanato-4-(methyl-sulfinyl) butane)], an isothiocyanate derived from cruciferous vegetables, has been shown to possess potent chemopreventive activity. We analyzed the effect of sulforaphane on the proliferation of pancreatic cancer cells. Sulforaphane inhibited pancreatic cancer cell growth in vitro with IC50s of around 10–15 μM and induced apoptosis. In pancreatic cancer xenograft mouse model, administration of sulforaphane showed remarkable inhibition of tumor growth without apparent toxicity noticed. We found that sulforaphane induced the degradation of heat shock protein 90 (Hsp90) client proteins and blocked the interaction of Hsp90 with its cochaperone p50Cdc37 in pancreatic cancer cells. Using nuclear magnetic resonance spectroscopy (NMR) with an isoleucine-specific labeling strategy, we overcame the protein size limit of conventional NMR and studied the interaction of sulforaphane with full-length Hsp90 dimer (170 kDa) in solution. NMR revealed multiple chemical shifts in sheet 2 and the adjacent loop in Hsp90 N-terminal domain after incubation of Hsp90 with sulforaphane. Liquid chromatography coupled to mass spectrometry further mapped a short peptide in this region that was tagged with sulforaphane. These data suggest a new mechanism of sulforaphane that disrupts protein–protein interaction in Hsp90 complex for its chemopreventive activity.  相似文献   

8.
The natural products novobiocin and derrubone have both demonstrated Hsp90 inhibition and structure–activity relationships have been established for each scaffold. Given these compounds share several key structural features, we hypothesized that incorporation of elements from each could provide insight to structural features important for Hsp90 inhibition. Thus, chimeric analogues of novobiocin and derrubone were constructed and evaluated. These studies confirmed that the functionality present at the 3-position of the isoflavone plays a critical role in determining Hsp90 inhibition and suggests that the bicyclic ring system present in both novobiocin and derrubone do not share similar modes of binding.  相似文献   

9.
Acquired multidrug resistance of cancer cells challenges the chemotherapeutic interventions. To understand the role of molecular chaperone, Hsp90 in drug adapted tumor cells, we have used in vitro drug adapted epidermoid tumor cells as a model system. We found that chemotherapeutic drug adaptation of tumor cells is mediated by induced activities of both Hsp90 and P-glycoprotein (P-gp). Although the high-affinity conformation of Hsp90 has correlated with the enhanced drug efflux activity, we did not observe a direct interaction between P-gp and Hsp90. The enrichment of P-gp and Hsp90 at the cholesterol-rich membrane microdomains is found obligatory for enhanced drug efflux activity. Since inhibition of cholesterol biosynthesis is not interfering with the drug efflux activity, it is presumed that the net cholesterol redistribution mediated by Hsp90 regulates the enhanced drug efflux activity. Our in vitro cholesterol and Hsp90 interaction studies have furthered our presumption that Hsp90 facilitates cholesterol redistribution. The drug adapted cells though exhibited anti-proliferative and anti-tumor effects in response to 17AAG treatment, drug treatment has also enhanced the drug efflux activity. Our findings suggest that drug efflux activity and metastatic potential of tumor cells are independently regulated by Hsp90 by distinct mechanisms. We expose the limitations imposed by Hsp90 inhibitors against multidrug resistant tumor cells.  相似文献   

10.
In eukaryotes, the molecular chaperones Hsp90 and Hsp70 are connected via the co-chaperone Sti1/Hop, which allows transfer of clients. Here, we show that the basic functions of yeast Sti1 and human Hop are conserved. These include the simultaneous binding of Hsp90 and Hsp70, the inhibition of the ATPase activity of Hsp90, and the ability to support client activation in vivo. Importantly, we reveal that both Hop and Sti1 are subject to inhibitory phosphorylation, although the sites modified and the influence of regulatory phosphorylation is species specific. Phospho-mimetic variants have a reduced ability to activate clients in vivo and different affinity for Hsp70. Hop is more tightly regulated, as phosphorylation affects also the interaction with Hsp90 and induces structural rearrangements in the core part of the protein.  相似文献   

11.
Heat shock protein 90 (Hsp90), an abundant molecular chaperone in the eukaryotic cytosol, is involved in the folding of a set of cell regulatory proteins and in the re-folding of stress-denatured polypeptides. The basic mechanism of action of Hsp90 is not yet understood. In particular, it has been debated whether Hsp90 function is ATP dependent. A recent crystal structure of the NH2-terminal domain of yeast Hsp90 established the presence of a conserved nucleotide binding site that is identical with the binding site of geldanamycin, a specific inhibitor of Hsp90. The functional significance of nucleotide binding by Hsp90 has remained unclear. Here we present evidence for a slow but clearly detectable ATPase activity in purified Hsp90. Based on a new crystal structure of the NH2-terminal domain of human Hsp90 with bound ADP-Mg and on the structural homology of this domain with the ATPase domain of Escherichia coli DNA gyrase, the residues of Hsp90 critical in ATP binding (D93) and ATP hydrolysis (E47) were identified. The corresponding mutations were made in the yeast Hsp90 homologue, Hsp82, and tested for their ability to functionally replace wild-type Hsp82. Our results show that both ATP binding and hydrolysis are required for Hsp82 function in vivo. The mutant Hsp90 proteins tested are defective in the binding and ATP hydrolysis–dependent cycling of the co-chaperone p23, which is thought to regulate the binding and release of substrate polypeptide from Hsp90. Remarkably, the complete Hsp90 protein is required for ATPase activity and for the interaction with p23, suggesting an intricate allosteric communication between the domains of the Hsp90 dimer. Our results establish Hsp90 as an ATP-dependent chaperone.  相似文献   

12.
HOP is a cochaperone belonging to the foldosome, a system formed by the cytoplasmic Hsp70 and Hsp90 chaperones. HOP acts as an adapter protein capable of transferring client proteins from the first to the second molecular chaperone. HOP is a modular protein that regulates the ATPase activity of Hsp70 and Hsp90 to perform its function. To obtain more detailed information on the structure and function of this protein, we produced the recombinant HOP of Plasmodium falciparum (PfHOP). The protein was obtained in a folded form, with a high content of α-helix secondary structure. Unfolding experiments showed that PfHOP unfolds through two transitions, suggesting the presence of at least two domains with different stabilities. In addition, PfHOP primarily behaved as an elongated dimer in equilibrium with the monomer. Small-angle X-ray scattering data corroborated this interpretation and led to the reconstruction of a PfHOP ab initio model as a dimer. Finally, the PfHOP protein was able to inhibit and to stimulate the ATPase activity of the recombinant Hsp90 and Hsp70–1, respectively, of P. falciparum. Our results deepened the knowledge of the structure and function of PfHOP and further clarified its participation in the P. falciparum foldosome.  相似文献   

13.
Heat shock protein 90 (Hsp90) as a molecular target for oncology therapeutics has attracted much attention in the last decade. The Hsp90 multichaperone complex has important roles in the growth and/or survival of cancer cells. Cdc37, as a cochaperone, associates kinase clients to Hsp90 and promotes the development of malignant tumors. Disrupting the Hsp90–Cdc37 interaction provides an alternative strategy to inhibit the function of Hsp90 for cancer therapy. Celastrol, as a natural product, can disrupt the Hsp90–Cdc37 interaction and induce degradation of kinase clients. The study conducted here attempted to elucidate the structure–activity relationship of celastrol derivatives as Hsp90–Cdc37 disruptors and to improve the druglike properties. 23 celastrol derivatives were designed, synthesized, and the biological activities and physicochemical properties were determined. The derivative CEL20 showed improved Hsp90–Cdc37 disruption activity, anti-proliferative activities as well as druglike properties. Additionally, CEL20 induced clients degradation, cell cycle arrest and apoptosis in Panc-1 cells. This study can provide reference for the discovery of novel Hsp90–Cdc37 disruptors.  相似文献   

14.
Using a pharmacological inhibitor of Hsp90 in cultured malarial parasite, we have previously implicated Plasmodium falciparum Hsp90 (PfHsp90) as a drug target against malaria. In this study, we have biochemically characterized PfHsp90 in terms of its ATPase activity and interaction with its inhibitor geldanamycin (GA) and evaluated its potential as a drug target in a preclinical mouse model of malaria. In addition, we have explored the potential of Hsp90 inhibitors as drugs for the treatment of Trypanosoma infection in animals. Our studies with full-length PfHsp90 showed it to have the highest ATPase activity of all known Hsp90s; its ATPase activity was 6 times higher than that of human Hsp90. Also, GA brought about more robust inhibition of PfHsp90 ATPase activity as compared with human Hsp90. Mass spectrometric analysis of PfHsp90 expressed in P. falciparum identified a site of acetylation that overlapped with Aha1 and p23 binding domain, suggesting its role in modulating Hsp90 multichaperone complex assembly. Indeed, treatment of P. falciparum cultures with a histone deacetylase inhibitor resulted in a partial dissociation of PfHsp90 complex. Furthermore, we found a well known, semisynthetic Hsp90 inhibitor, namely 17-(allylamino)-17-demethoxygeldanamycin, to be effective in attenuating parasite growth and prolonging survival in a mouse model of malaria. We also characterized GA binding to Hsp90 from another protozoan parasite, namely Trypanosoma evansi. We found 17-(allylamino)-17-demethoxygeldanamycin to potently inhibit T. evansi growth in a mouse model of trypanosomiasis. In all, our biochemical characterization, drug interaction, and animal studies supported Hsp90 as a drug target and its inhibitor as a potential drug against protozoan diseases.  相似文献   

15.
BackgroundInhibition of Hsp90 is desirable due to potential downregulation of oncogenic clients. Early generation inhibitors bind to the N-terminal domain (NTD) but C-terminal domain (CTD) inhibitors are a promising class because they do not induce a heat shock response. Here we present a new structural class of CTD binding molecules with a unique allosteric inhibition mechanism.MethodsA hit molecule, NSC145366, and structurally similar probes were assessed for inhibition of Hsp90 activities. A ligand-binding model was proposed indicating a novel Hsp90 CTD binding site. Client protein downregulation was also determined.ResultsNSC145366 interacts with the Hsp90 CTD and has anti-proliferative activity in tumor cell lines (GI50 = 0.2–1.9 μM). NSC145366 increases Hsp90 oligomerization resulting in allosteric inhibition of NTD ATPase activity (IC50 = 119 μM) but does not compete with NTD or CTD-ATP binding. Treatment of LNCaP prostate tumor cells resulted in selective client protein downregulation including AR and BRCA1 but without a heat shock response. Analogs had similar potencies in ATPase and chaperone activity assays and variable effects on oligomerization. In silico modeling predicted a binding site at the CTD dimer interface distinct from the nucleotide-binding site.ConclusionsA set of symmetrical scaffold molecules with bisphenol A cores induced allosteric inhibition of Hsp90. Experimental evidence and molecular modeling suggest that the binding site is independent of the CTD-ATP site and consistent with unique induction of allosteric effects.General significanceAllosteric inhibition of Hsp90 via a mechanism used by the NSC145366-based probes is a promising avenue for selective oncogenic client downregulation.  相似文献   

16.
A series of 18β-glycyrrhetinic acid (GA) conjugated aminobenzothiazole derivatives were designed, synthesized and evaluated for disruption activity of Hsp90-Cdc37 as well as the effects of in vitro cell migration. These compounds exhibited relatively good disruption activity against Hsp90-Cdc37 with IC50 values in low micromolar range. A docking study of the most active compound 11g revealed key interactions between 11g and Hsp90-Cdc37 complex in which the benzothiazole moiety and the amine chain group were important for improving activity. It is noteworthy that further antitumor activity screening revealed that some compounds exhibited better inhibitory activity than the commercial anticancer drug 5-FU and showed potent suppression activity against drug-resistant cancer cells. In particular, compound 11?g appeared to be the most potent compound against the A549 cell line, at least partly, by inhibition of the activity of Hsp90 and apoptosis induction. The treatment of A549 cells with compound 11g resulted in inhibition of in vitro cell migration through wound healing assay and S phase of cell cycle arrested. In addition, 11g-induced apoptosis was significantly facilitated in A549 cells. Thus, we conclude that GA aminobenzothiazole derivatives may be the potential Hsp90-Cdc37 disruptors with the ability to suppress cells migration and reversed drug-resistant.  相似文献   

17.
《Biomarkers》2013,18(1):31-38
Hsp90 inhibitors are under investigation in multiple human clinical trials for the treatment of cancers, including myeloma, breast cancer, prostate, lung, melanoma, gastrointestinal stromal tumour and acute myeloid leukaemia. The pharmacodynamic activity of Hsp90 inhibitors in the clinic is currently assessed by Hsp70 induction in peripheral blood mononuclear cells using Western blot analysis, a method that is laborious, semiquantitative and difficult to implement in the clinic. Since Hsp70 was reported to be secreted by tumour cells and elevated in sera of cancer patients, serum Hsp70 has been evaluated as a potentially more robust, easily and reproducibly measured biomarker of Hsp90 inhibition as an alternative to cytosolic Hsp70. A highly sensitive and specific electrochemiluminescent ELISA was developed to measure serum Hsp70 and employed to evaluate Hsp70 levels in both ex vivo and xenograft samples. In ex vivo studies, maximal secretion of Hsp70 by tumour cells was observed between 48 and 72?h after exposure to Hsp90 inhibitors. In in vivo studies a 3–4-fold increase in serum Hsp70 was observed following treatment with BIIB021 in tumour-bearing mice. Strikingly, secreted Hsp70 was detectable in mice transplanted with human tumours but not in naive mice indicating a direct origination from the transplanted tumours. Analysis of clinical samples revealed low baseline levels (2–15?ng ml?1) of Hsp70 in the serum of cancer patients and normal donors. Together these findings in laboratory studies and archived cancer patient sera suggest that serum Hsp70 could be a novel biomarker to assess reliably the pharmacological effects of Hsp90 inhibitors in clinical trials, especially under conditions where collection of tumour biopsies is not feasible.  相似文献   

18.
19.
Chaperones are critical for the folding and regulation of a wide array of cellular proteins. Heat Shock Proteins (Hsps) are the most representative group of chaperones. Hsp90 represents up to 1–2% of soluble protein. Although the Hsp90 role is being studied in neurodegenerative diseases, its role in neuronal differentiation remains mostly unknown. Since neuronal polarity mechanisms depend on local stability and degradation, we asked whether Hsp90 could be a regulator of axonal polarity and growth. Thus, we studied the role of Hsp90 activity in a well established model of cultured hippocampal neurons using an Hsp90 specific inhibitor, 17-AAG. Our present data shows that Hsp90 inhibition at different developmental stages disturbs neuronal polarity formation or axonal elongation. Hsp90 inhibition during the first 3 h in culture promotes multiple axon morphology, while this inhibition after 3 h slows down axonal elongation. Hsp90 inhibition was accompanied by decreased Akt and GSK3 expression, as well as, a reduced Akt activity. In parallel, we detected an alteration of kinesin-1 subcellular distribution. Moreover, these effects were seconded by changes in Hsp70/Hsc70 subcellular localization that seem to compensate the lack of Hsp90 activity. In conclusion, our data strongly suggests that Hsp90 activity is necessary to control the expression, activity or location of specific kinases and motor proteins during the axon specification and axon elongation processes. Even more, our data demonstrate the existence of a “time-window” for axon specification in this model of cultured neurons after which the inhibition of Hsp90 only affects axonal elongation mechanisms.  相似文献   

20.
Epigallocatechin gallate (EGCG) is a major polyphenols of green tea may have the possibility to inhibit epidermal growth factor receptor (EGFR) activity and lead to reduce non-small cell lung cancer (NSCLC) progression. However, EGCG has some toxic features; moreover, there is a lack of explorations into the molecular interaction mechanisms of EGCG and the EGFR. In this examination, integration of quantitative structure–activity relationship (QSAR) modeling, pharmacophore-based virtual screening, and ensemble docking approaches were used to predict potential novel EGCG analogs as effective EGFR inhibitors. QSAR modeling of logP and logS predictions and toxicity endpoint investigation for a set of 82 compounds were shown good predictive ability and robustness from the applicability domain and confusion matrix elucidations. Virtual screening and docking studies revealed that seven high potential EGCG analogs as strong EGFR binders. Molecular interactions interpretations indicated some insights into the structural features of ligands that efficiently interfere with mutation possible residues (Gly719 and Thr790) of the EGFR. The hydrogen bonds, hydrophobic interactions, atomic π-cation interactions and salt bridges of ligands are contributing additional stability to receptor structure, which can lead to blocking the intracellular protein-tyrosine kinase activity, including EGFR associated pathways activation in NSCLC. Therefore, this can characterize as a block-cluster mechanism between EGCG analogs and EGFR complexes. In silico anti-EGFR and anticancer activity predictions suggested that, ligands could act as promising pharmacological, anticancer, and drug-like templates of EGFR towards moderating the NSCLC progressions. These results and provided pinpoints could be beneficial to recognize probable therapeutic targets for NSCLC therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号