首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discovered a series of novel and potent thiazolylpyridinone-based SCD1 inhibitors based on a 2-aminothiazole HTS hit by replacing the amide bond with a pyridinone moiety. Compound 19 demonstrated good potency against SCD1 in vitro and in vivo. The mouse liver microsomal SCD1 in vitro potency for 19 was improved by more than 240-fold compared to the original HTS hit. Furthermore, 19 demonstrated a dose-dependent reduction of plasma desaturation index with an ED50 of 6.3 mg/kg. Compound 19 demonstrated high liver to plasma and liver to eyelid exposures, indicating preferential liver distribution. The preliminary toxicology study with compound 19 did not demonstrate adverse effects related to SCD1 inhibition, suggesting a wide safety margin with respect to other known SCD1 inhibitors with wider distribution profiles.  相似文献   

2.
Captopril is a New Delhi metallo-β-lactamase-1 (NDM-1) inhibitor with an IC50 value of 7.9 μM. It is composed of two units: a 3-mercapto-2-methylpropanoyl fragment and a proline residue. In this study, we synthesized simple amide derivatives of 3-mercapto-2-methylpropanoic acid, and then tested them as NDM-1 inhibitors in order to identify the pharmacophore for NDM-1 inhibition. We found that the lead compound 22 had an IC50 value of 1.0 μM. Further structure simplification provided compounds 31 and 32, which had IC50 values of 15 and 10 μM, respectively. As compound 32 is a clinically used antidote for metal poisoning, it has great potential to be repurposed to treat bacterial infections.  相似文献   

3.
A series of 4-(3-aryloxyaryl)quinolines with alcohol substituents on the terminal aryl ring was prepared as potential LXR agonists, in which an alcohol group replaced an amide in previously reported amide analogs. High affinity LXR ligands with excellent agonist potency and efficacy in a functional model of LXR activity were identified, demonstrating that alcohols can substitute for amides while retaining LXR activity. The most potent compound was 5b which had an IC50 = 3.3 nM for LXRβ binding and EC50 = 12 nM (122% efficacy relative to T0901317) in an ABCA1 mRNA induction assay in J774 mouse cells.  相似文献   

4.
We describe the discovery and optimization of a novel series of furo[3,2-d]pyrimidines as G protein-coupled receptor 119 agonists. Agonistic activity of 4 (EC50 = 129 nM) was improved by replacing the intramolecular hydrogen bond between the fluorine atom and the aniline hydrogen in the head moiety with a covalent C-C bond to enhance conformational restriction, which consequently gave a lead compound 12 (EC50 = 53 nM). Optimized compound 26, which was identified by the further optimization of 12, exhibited potent activity (EC50 = 42 nM) with improved clearance in liver microsomes and induced a 33% reduction in blood glucose area under the curve at a dose of 10 mg/kg in an oral glucose tolerance test in C57BL/6N mice.  相似文献   

5.
Six diphenolic compounds containing adamantane moiety were synthesized and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells. The inhibitory activity of 4-adamantyl resorcinol 1 was similar to that of 4-n-butyl resorcinol in both assays. However, dihydroxyl benzamide derivatives 6a–e showed different inhibitory patterns. All derivatives significantly suppressed the cellular melanin formation without tyrosinase inhibitory activities. These behaviors indicated that the introduction of amide bond changes the binding mode of dihydroxyl groups to tyrosinase. Among derivatives, 6d (3,4-dihydroxyl compound) and 6e (2,3-dihydroxyl compound) showed stronger inhibitory activities (IC50 = 1.25 μM and 0.73 μM, respectively) as compared to 4-n-butyl resorcinol (IC50 = 21.64 μM) and hydroquinone (IC50 = 3.97 μM). This study showed that the position of dihydroxyl substituent at aromatic ring is important for the intercellular inhibition of melanin formation, and also amide linkage and adamantane moiety enhance the inhibition.  相似文献   

6.
A series of pyrrolo-benzo-1,4-diazine analogs have been synthesized to improve the profile of the previous lead compound 1. The syntheses, structure–activity relationships, and selected pharmacokinetic data of these analogs are described. The optimization efforts allowed the identification of 33, a quinoline amide exhibiting potent Nav1.7 inhibitory activity and moderate selectivity over Nav1.5. Compound 33 displayed anti-nociceptive oral efficacy in a rat CFA inflammatory pain model at 100 mpk and in a rat spinal nerve ligation neuropathic pain model with an EC50 75 μM.  相似文献   

7.
As an important member of anti-apoptotic Bcl-2 protein, myeloid cell leukemia sequence 1 (Mcl-1) protein is an attractive target for cancer therapy. In this study, a new series of pyrrolidine derivatives as Mcl-1 inhibitors were developed by mainly modifying the amino acid side chain of compound 1. Among them, compound 18 (Ki = 0.077 μM) exhibited better potent inhibitory activities towards Mcl-1 protein compared to positive control Gossypol (Ki = 0.18 μM). In addition, compound 40 possessed good antiproliferative activities against PC-3 cells (Ki = 8.45 μM), which was the same as positive control Gossypol (Ki = 7.54 μM).  相似文献   

8.
A series of caffeic acid amide derivatives 2-cyano-(3-substituted phenyl)acrylamides were synthesized via Knoevenogal condensation of substituted benzaldehydes with cyanoacetamides. The structure of compound 1f was determined as E-isomer by X-ray diffractive analysis. The biological screening tests in vitro showed that compound 1b has obvious inhibitory activities against human gastric carcinoma cell line BGC-823, human nasopharyngeal carcinoma cell line KB and human hepatoma cell line BEL-7402 with IC50 values of 5.6 μg/mL, 13.1 μg/mL and 12.5 μg/mL, respectively. Some preliminary structure–activity relationships (SAR) were also proposed which may provide a direction for further study.  相似文献   

9.
A series of novel thiadiazole amide derivatives have been synthesized and evaluated for inhibitory activities against Cdc25B and PTP1B. Most of them showed inhibitory activities against Cdc25B (IC50 = 1.18–8.01 μg/mL) and PTP1B (IC50 = 0.85–8.75 μg/mL), respectively. Moreover, compounds 5b and 4l were most potent with IC50 values of 1.18 and 0.85 μg/mL for Cdc25B and PTP1B, respectively, compared with reference drugs Na3VO4 (IC50 = 0.93 μg/mL) and oleanolic acid (IC50 = 0.85 μg/mL). The results of selectivity experiments showed that the target compounds were selective inhibitors against PTP1B and Cdc25B. Enzyme kinetic experiments demonstrated that compound 5k was a specific inhibitor with the typical characteristics of a mixed inhibitor.  相似文献   

10.
6,7-Benzomorphan derivatives, exhibiting different μ, δ, and κ receptor selectivity profiles depending on the N-substituent, represent a useful skeleton for the synthesis of new and better analgesic agents. In this work, an aromatic ring and/or alkyl residues have been used with an N-propanamide or N-acetamide spacer for the synthesis of a new series of 5,9-dimethyl-2′-hydroxy-6,7-benzomorphan derivatives (1222). Data obtained by competition binding assays showed that the μ opioid receptor seems to prefer an interaction with the 6,7-benzomorphan ligands having an N-substituent with a propanamide spacer and less hindered amide. Highly stringent features are required for δ receptor interaction, while an N-acetamide spacer and/or bulkier amide could preferentially lead to κ receptor selectivity. In the propanamide series, compound 12 (named LP1) displayed high μ affinity (Ki = 0.83 nM), good δ affinity (Ki = 29 nM) and low affinity for the κ receptor (Ki = 110 nM), with a selectivity ratio δ/μ and κ/μ of 35.1 and 132.5, respectively. Further, in the adenylyl cyclase assay, LP1 displayed a μ/δ agonist profile, with IC50 values of 4.8 and 12 nM at the μ and δ receptors, respectively. The antinociceptive potency of LP1 in the tail-flick test after sc administration in rat was comparable with the potency of morphine (ED50 = 2.03 and 2.7 mg/kg, respectively), and was totally reversed by naloxone. LP1, possessing a μ/δ agonist profile, could represent a lead in further developing benzomorphan-based ligands with potent in vivo analgesic activity and a reduced tendency to induce side effects.  相似文献   

11.
New oxazolinyl derivatives of [17(20)E]-pregna-5,17(20)-diene: 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,5′-dihydro-1′,3′-oxazole 1 and 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,4′-dimethyl-4′,5′-dihydro-1′,3′-oxazole 2 were evaluated as potential CYP17A1 inhibitors in comparison with 17-(pyridin-3-yl)androsta-5,16-dien-3β-ol 3 (abiraterone). Differential absorption spectra of human recombinant CYP17A1 in the presence of compound 1 (λmax = 422 nm, λmin = 386 nm) and compound 2 (λmax = 416 nm) indicated significant differences in enzyme/inhibitors complexes. CYP17A1 activity was measured using electrochemical methods. Inhibitory activity of compound 1 was comparable with abiraterone 3 (IC50 = 0.9 ± 0.1 μM, and IC50 = 1.3 ± 0.1 μM, for compounds 1 and 3, respectively), while compound 2 was found to be weaker inhibitor (IC50 = 13 ± 1 μM). Docking of aforementioned compounds to CYP17A1 revealed that steroid fragments of compound 1 and abiraterone 3 occupied close positions; oxazoline cycle of compound 1 was coordinated with heme iron similarly to pyridine cycle of abiraterone 3. Configuration of substituents at 17(20) double bond in preferred docked position corresponded to Z-isomers of compounds 1 and 2. Presence of 4′-substituents in oxazoline ring of compound 2 prevents coordination of oxazoline nitrogen with heme iron and worsens its docking score in comparison with compound 1. These data indicate that oxazolinyl derivative of [17(20)E]-pregna-5,17(20)-diene 1 (rather than 4′,4′-dimethyl derivative 2) may be considered as potential CYP17A1 inhibitor and template for development of new compounds affecting growth and proliferation of prostate cancer cells.  相似文献   

12.
13.
Novel thiazole derivatives were synthesized and evaluated as vascular adhesion protein-1 (VAP-1) inhibitors. Although we previously identified a compound (2) with potent VAP-1 inhibitory activity in rats, the human activity was relatively weak. Here, to improve the human VAP-1 inhibitory activity of compound 2, we first evaluated the structure–activity relationships of guanidine bioisosteres as simple small molecules and identified a 1H-benzimidazol-2-amine (5) with potent activity compared to phenylguanidine (1). Based on the structure of compound 5, we synthesized a highly potent VAP-1 inhibitor (37b; human IC50 = 0.019 μM, rat IC50 = 0.0051 μM). Orally administered compound 37b also markedly inhibited ocular permeability in streptozotocin-induced diabetic rats after oral administration, suggesting it is a promising compound for the treatment of diabetic macular edema.  相似文献   

14.
A series of reversible inhibitors of lysine specific demethylase 1 (LSD1) with a 5-hydroxypyrazole scaffold have been developed from compound 7, which was identified from the patent literature. Surface plasmon resonance (SPR) and biochemical analysis showed it to be a reversible LSD1 inhibitor with an IC50 value of 0.23 µM. Optimisation of this compound by rational design afforded compounds with Kd values of <10 nM. In human THP-1 cells, these compounds were found to upregulate the expression of the surrogate cellular biomarker CD86. Compound 11p was found to have moderate oral bioavailability in mice suggesting its potential for use as an in vivo tool compound.  相似文献   

15.
A series of 2-oxo-6,8-diazabicyclo[3.2.2]nonane derivatives was prepared and the affinity towards σ1 and σ2 receptors was investigated by means of radioligand binding assays as well as their inhibition of the growth of six human tumor cell lines was studied. Starting from the enantiopure bicyclic ketones 3 and ent-3 bridged piperazines with different residues in position 6 were synthesized. The N-6 allyl protective group was removed by a RhCl3 catalyzed double bond isomerization and subsequent hydrolysis of the resulting enamide 8. After acetalization the secondary amide 10 was alkylated and arylated. Structure affinity relationships show that a relatively large substituent, which has not necessarily to be an aromatic one, is required in position 6 for high σ1 receptor affinity (e.g., 12 and ent-12 with a dimethylallyl residue: Ki = 20 nM and 17 nM). Furthermore, it was shown that substituents that reduce the basicity of N-6 led to a severe decrease in σ1 affinity. Growth inhibition experiments with six human tumor cell lines revealed that the allyl and benzyl substituted 6,8-diazabicyclo[3.2.2]nonan-2-one derivatives 5, ent-5 and ent-14 are able to selectively inhibit the growth of the bladder cancer cell line 5637.  相似文献   

16.
A series of 4-(amido-biarylether)-quinolines was prepared as potential LXR agonists. Appropriate substitution with amide groups provided high affinity LXR ligands, some with excellent potency and efficacy in functional assays of LXR activity. Novel amide 4g had a binding IC50 = 1.9 nM for LXRβ and EC50 = 34 nM (96% efficacy relative to T0901317) in an ABCA1 gene expression assay in mouse J774 cells, demonstrating that 4-(biarylether)-quinolines with appropriate amide substitution are potent LXR agonists  相似文献   

17.
A series of CR2(OH)-diarylpyrimidine derivatives (CR2(OH)-DAPYs) featuring a hydrophobic group at CH(OH) linker between wing I and the central pyrimidine were synthesized and evaluated for their anti-HIV activity in MT-4 cell cultures. All the target compounds except for compound 3k displayed inhibitory activity against HIV-1 wild-type with EC50 values ranging from 7.21 ± 1.99 to 0.067 ± 0.006 μM. Among them, compound 3d showed the most potent anti-HIV-1 activity (EC50 = 0.067 ± 0.006 μM, SI > 592), which was approximately 2-fold more potent than the reference drugs nevirapine (NVP) and delaviridine (DLV) in the same assay. In addition, the binding modes with HIV-1 RT and the preliminary SAR studies of these new derivatives were also investigated.  相似文献   

18.
A series of bis-aromatic amides was designed, synthesized, and evaluated as a new class of inhibitors with IC50 values in the micromolar range against protein tyrosine phosphatase 1B (PTP1B). Among them, compound 15 displayed an IC50 value of 2.34 ± 0.08 μM with 5-fold preference over TCPTP. More importantly, the treatment of CHO/HIR cells with compound 15 resulted in increased phosphorylation of insulin receptor (IR), which suggested extensive cellular activity of compound 15. These results provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs.  相似文献   

19.
Here we report on the design and synthesis of several heterocyclic analogues belonging to the 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol series of molecules. Compounds were subjected to [3H]spiperone binding assays, carried out with HEK-293 cells expressing either D2 or D3 dopamine receptors, in order to evaluate their inhibition constant (Ki) at these receptors. Results indicate that N-substitution on the piperazine ring can accommodate various substituted indole rings. The results also show that in order to maintain high affinity and selectivity for the D3 receptor the heterocyclic ring does not need to be connected directly to the piperazine ring as the majority of compounds included here are linked either via an amide or a methylene linker to the heterocyclic moiety. The enantiomers of the most potent racemic compound 10e exhibited differential activity with (?)-10e (Ki; D2 = 47.5 nM, D3 = 0.57 nM) displaying higher affinity at both D2 and D3 receptors compared to its enantiomer (+)-10e (Ki; D2 = 113 nM, D3 = 3.73 nM). Additionally, compound (?)-10e was more potent and selective for the D3 receptor compared to either 7-OH-DPAT or 5-OH-DPAT. Among the bioisosteric derivatives, the indazole derivative 10g and benzo[b]thiophene derivative 10i exhibited the highest affinity for D2 and D3 receptors. In the functional GTPγS binding study, one of the lead molecules, (?)-15, exhibited potent agonist activity at both D2 and D3 receptors with preferential affinity at D3.  相似文献   

20.
A series of 4-functionalized phenyl-O-β-d-glycosides were designed, synthesized and evaluated as a new class of mushroom tyrosinase inhibitors. The results demonstrated that compounds 6a13a bearing a thiosemicarbazide moiety exhibited potent activities with IC50 values range from 0.31 to 52.8 μM. Particularly, compound 9a containing acetylated glucose moiety was found to be the most active molecule with an IC50 value of 0.31 μM. SARs analysis suggested that (1) the thiosemicarbazide moiety remarkably contributed to the increase of inhibitory effects on tyrosinase; (2) the configuration and bond type of sugar moiety also played a very important role in determining their inhibitory activities. The inhibition kinetics and inhibition mechanism study revealed that compound 9a was reversible and competitive type inhibitor, whereas compound 13a was reversible and competitive–uncompetitive mixed-II type inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号