首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of various N,N′-substituents in the molecule of benzothiazole trimethine cyanine dye on its ability to sense the amyloid aggregates of protein was studied. The dyes are low fluorescent when free and in the presence of monomeric proteins, but their emission intensity sharply increases in complexes with aggregated insulin and lysozyme, with the fluorescence quantum yield reaching up to 0.42.  相似文献   

2.
In the cell, protein folding into stable globular conformations is in competition with aggregation into non-functional and usually toxic structures, since the biophysical properties that promote folding also tend to favor intermolecular contacts, leading to the formation of β-sheet-enriched insoluble assemblies. The formation of protein deposits is linked to at least 20 different human disorders, ranging from dementia to diabetes. Furthermore, protein deposition inside cells represents a major obstacle for the biotechnological production of polypeptides. Importantly, the aggregation behavior of polypeptides appears to be strongly influenced by the intrinsic properties encoded in their sequences and specifically by the presence of selective short regions with high aggregation propensity. This allows computational methods to be used to analyze the aggregation properties of proteins without the previous requirement for structural information. Applications range from the identification of individual amyloidogenic regions in disease-linked polypeptides to the analysis of the aggregation properties of complete proteomes. Herein, we review these theoretical approaches and illustrate how they have become important and useful tools in understanding the molecular mechanisms underlying protein aggregation.  相似文献   

3.
Amyloid fibrillogenesis has been involved in at least 40 different degenerative diseases. The 51-residue polypeptide hormone insulin, which is associated with type II diabetes, has been demonstrated to fibrillate in vitro. With bovine insulin as a model, the research presented here examines the influence of two simple, unstructured d,l-lysine-co-glycine (d,l-lys-co-gly) and d,l-lysine-co-L-phenylalanine (d,l-lys-co-phe) copolypeptides, on the in vitro fibril formation process of bovine insulin at pH 2.0 and 55 °C. Our results showed that amyloid fibrillogenesis of insulin may be suppressed by both copolypeptides in a concentration-dependent fashion. In addition, the copolypeptides with higher molar fractions of glycine or l-phenylalanine residue, which are considered to possess higher hydrophobic interacting capacities, demonstrated the superior inhibitory potency against insulin fibril formation. Our findings suggest that the association of insulin and copolypeptides, which is likely dominated by hydrophobic interactions and hydrogen bonding, may mitigate the extent of insulin fibrillogenesis. We believe the results from this work may contribute to the understanding of the molecular factors affecting amyloid fibrillation and the molecular mechanism(s) of the interactions between the unstructured polypeptides and amyloid-forming proteins.  相似文献   

4.
This article details a quantitative method to measure the D-periodic spacing of type I collagen fibrils using atomic force microscopy coupled with analysis using a two-dimensional fast fourier transform approach. Instrument calibration, data sampling and data analysis are discussed and comparisons of the data to the complementary methods of electron microscopy and X-ray scattering are made. Examples of the application of this new approach to the analysis of type I collagen morphology in disease models of estrogen depletion and osteogenesis imperfecta (OI) are provided. We demonstrate that it is the D-spacing distribution, not the D-spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage osteoporosis and OI. The ability to quantitatively characterize nanoscale morphological features of type I collagen fibrils will provide important structural information regarding type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knockout studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments.  相似文献   

5.
The role of n → π transitions in the optical spectra of alkoxy- and thioalkyl-substituted phthalocyanines with peripheral substituents is re-examined, based on a detailed analysis of UV-visible absorption, magnetic circular dichroism (MCD) and fluorescence emission spectral data and the results of density functional theory (DFT) and time dependent-density functional theory (TD-DFT) calculations. The nπ excited states associated with the lone pairs of the peripheral heteroatoms have been proposed as the origin of a second emission peak observed in the 400-600 nm region, which has been assigned as S2 emission, since S1 fluorescence associated with the Q band is observed in the near IR region. Our results demonstrate that emission from a photodecomposition product can fully account for this violet emission and that reports of S2 emission for peripherally substituted phthalocyanines and porphyrazines should be treated with caution.  相似文献   

6.
Many protein misfolding diseases, for example, Alzheimer’s, Parkinson’s and Huntington’s, are characterised by the accumulation of protein aggregates in an amyloid fibrillar form. Natural products which inhibit fibril formation are a promising avenue to explore as therapeutics for the treatment of these diseases. In this study we have shown, using in vitro thioflavin T assays and transmission electron microscopy, that grape seed extract inhibits fibril formation of kappa-casein (κ-CN), a milk protein which forms amyloid fibrils spontaneously under physiological conditions. Among the components of grape seed extract, gallic acid was the most active component at inhibiting κ-CN fibril formation, by stabilizing κ-CN to prevent its aggregation. Concomitantly, gallic acid significantly reduced the toxicity of κ-CN to pheochromocytoma12 cells. Furthermore, gallic acid effectively inhibited fibril formation by the amyloid-beta peptide, the putative causative agent in Alzheimer’s disease. It is concluded that the gallate moiety has the fibril-inhibitory activity.  相似文献   

7.
The dependence on environmental conditions of the assembly of barstar into amyloid fibrils was investigated starting from the nonnative, partially folded state at low pH (A-state). The kinetics of this process was monitored by CD spectroscopy and static and dynamic light scattering. The morphology of the fibrils was visualized by electron microscopy, while the existence of the typical cross- structure substantiated by solution X-ray scattering. At room temperature, barstar in the A-state is unable to form amyloid fibrils, instead amorphous aggregation is observed at high ionic strength. Further destabilization of the structure is required to transform the polypeptide chain into an ensemble of conformations capable of forming amyloid fibrils. At moderate ionic strength (75 mM NaCl), the onset and the rate of fibril formation can be sensitively tuned by increasing the temperature. Two types of fibrils can be detected differing in their morphology, length distribution and characteristic far UV CD spectrum. The formation of the different types depends on the particular environmental conditions. The sequence of conversion: A-statefibril type Ifibril type II appears to be irreversible. The transition into fibrils is most effective when the protein chain fulfills particular requirements concerning secondary structure, structural flexibility and tendency to cluster.Abbreviations CD circular dichroism - DLS dynamic light scattering - EM electron microscopy - SLS static light scattering - SAXS small-angle X-ray scattering - SOXS solution X-ray scattering  相似文献   

8.
We here report an experimental study on the thermal aggregation process of concanavalin A, a protein belonging to the legume lectins family. The aggregation process and the involved conformational changes of the protein molecules were followed by means of fluorescence techniques, light scattering, circular dichroism, zeta potential measurements and atomic force microscopy. Our results show that the aggregation process of concanavalin A may evolve through two distinct pathways leading, respectively, to the formation of amyloids or amorphous aggregates. The relative extent of the two pathways is determined by pH, as amyloid aggregation is favored at high pH values ( approximately 9), while the formation of amorphous aggregates is favored at low pH ( approximately 5). At difference from amorphous aggregation, the formation of amyloid fibrils requires significant conformational changes on the protein, both at secondary and tertiary structural level. To our knowledge, this is the first observation of amyloid fibrils from concanavalin A.  相似文献   

9.
Assembly of collagen into microribbons: effects of pH and electrolytes   总被引:3,自引:0,他引:3  
Collagen represents the major structural protein of the extracellular matrix. Elucidating the mechanism of its assembly is important for understanding many cell biological and medical processes as well as for tissue engineering and biotechnological approaches. In this work, conditions for the self-assembly of collagen type I molecules on a supporting surface were characterized. By applying hydrodynamic flow, collagen assembled into ultrathin ( approximately 3 nm) highly anisotropic ribbon-like structures coating the entire support. We call these novel collagen structures microribbons. High-resolution atomic force microscopy topographs show that subunits of these microribbons are built by fibrillar structures. The smallest units of these fibrillar structures have cross-sections of approximately 3 x 5nm, consistent with current models of collagen microfibril formation. By varying the pH and electrolyte of the buffer solution during the self-assembly process, the microfibril density and contacts formed within this network could be controlled. Under certain electrolyte compositions the microribbons and microfibers display the characteristic D-periodicity of approximately 65 nm observed for much thicker collagen fibrils. In addition to providing insight into the mechanism of collagen assembly, the ultraflat collagen matrices may also offer novel ways to bio-functionalize surfaces.  相似文献   

10.
We have imaged microtubules, essential structural elements of the cytoskeleton in eukaryotic cells, in physiological conditions by scanning force microscopy. We have achieved molecular resolution without the use of cross-linking and chemical fixation methods. With tip forces below 0.3 nN, protofilaments with ~6 nm separation could be clearly distinguished. Lattice defects in the microtubule wall were directly visible, including point defects and protofilament separations. Higher tip forces destroyed the top half of the microtubules, revealing the inner surface of the substrate-attached protofilaments. Monomers could be resolved on these inner surfaces.Abbreviations APTS (3-aminopropyl)triethoxysilane - DETA N1-[3-(trimethoxysilyl)propyl]diethylenetriamine - EM electron microscopy - MT microtubule - SFM scanning force microscopy  相似文献   

11.
Atomic Force Microscopy (AFM) has become an invaluable tool for studying the micro- and nanoworlds. As a stand-alone, high-resolution imaging technique and force transducer, it defies most other surface instrumentation in ease of use, sensitivity and versatility. The main strength of AFM relies on the possibility to operate in an aqueous environment on a wide variety of biological samples, from single molecules – DNA or proteins – to macromolecular assemblies like biological membranes. Understanding the effect of mechanical stress on membranes is of primary importance in biophysics, since cells are known to perform their function under a complex combination of forces. In the later years, AFM-based Force-Spectroscopy (AFM-FS) has provided a new vista on membrane mechanics in a confined area within the nanometer realm, where most of the specific molecular interactions take place. Lipid membranes are electrostatically charged entities that physiologically coexist with electrolyte solutions. Thus, specific interactions with ions are a matter of considerable interest. The distribution of ions in the solution and their interaction with the membranes are factors that substantially modify the structure and dynamics of the cell membranes. Furthermore, signaling processes are modified by the membrane capability of retaining ions. Supported Lipid Bilayers (SLBs) are a versatile tool to investigate phospholipid membranes mimicking biological surfaces. In the present contribution, we review selected experiments on the mechanical stability of SLBs as models of lipid membranes by means of AFM-FS, with special focus on the effect of cations and ionic strength in the overall nanomechanical stability.  相似文献   

12.
利用双偏振极化干涉测量仪(DPI)研究了界面上配基种类对BSA吸附行为的影响。采用3-氨基丙基三乙氧基硅烷(APTES)、3-(甲氨基)丙基三甲氧基硅烷(MAPTMS)和N,N-二乙基-3-氨基丙基三甲氧基硅烷(DAPTMS)对DPI芯片进行了修饰,利用X射线光电子能谱比较了芯片上不同配基的密度,采用原子力显微镜(AFM)和DPI对界面上BSA吸附行为进行了研究。结果表明APTES修饰界面上BSA呈饼状,高配基密度易导致BSA多位点吸附。相同偶联密度条件下BSA在DAPTMS修饰芯片的吸附量高于MAPTMS修饰芯片,但吸附层厚度一致,表明DAPTMS表面上BSA存在聚集现象;AFM扫描结果与DPI分析结果一致,证明了配基密度和种类不仅影响界面上蛋白质吸附量,而且影响蛋白质吸附密度和表面聚集行为。  相似文献   

13.
Hereditary spherocytosis (HS), an erythrocyte membranopathy, is a heterogeneous disease, even at the level of the erythrocyte population. The paper aims at studying the mechanical properties (the Young’s modulus, median and RMS roughness of friction force maps; fractal dimension, lacunarity and spatial distribution parameters of lateral force maps) of the cell surface layer of the erythrocytes of two different morphologies (discocytes and spherocytes) in HS using atomic force microscopy. The results of spatial-spectral and fractal analysis showed that the mechanical property maps of the HS spherocyte surface were more structurally homogeneous compared to the maps of HS discocytes. HS spherocytes also had a reduced RMS roughness and lacunarity of the mechanical property maps. The Young’s modulus and averaged friction forces over the microscale HS spherocyte surface regions were approximately 20% higher than that of HS discocytes. The revealed significant difference at the nano- and microscales in the structural and mechanical properties of main (discoidal and spheroidal) morphological types of HS erythrocytes can potentially cause blood flow disturbance in the vascular system in HS.  相似文献   

14.
At least twenty human proteins can fold abnormally to form pathological deposits that are associated with several degenerative diseases. Despite extensive investigation on amyloid fibrillogenesis, its detailed molecular mechanisms remain unknown. This study is aimed at exploring the inhibitory activity of curcumin against the fibrillation of hen lysozyme. We found that the formation of amyloid fibrils at pH 2.0 in vitro was inhibited by curcumin in a dose-dependent manner. Moreover, quenching analysis confirmed the existence of an interaction between curcumin and lysozyme, and Van't Hoff analysis indicated that the curcumin–lysozyme interaction is predominantly governed by Van Der Waals force or hydrogen bonding. Curcumin was also found to acquire disaggregating ability on preformed lysozyme fibrils. Finally, we observed that curcumin pre-incubated at 25 °C for at least 7 days inhibited lysozyme fibrillogenesis better than untreated curcumin and the enhanced inhibition against HEWL fibrillation might be attributed to the presence of dimeric species.  相似文献   

15.
Protein and peptide aggregation into amyloid plaques is associated with a large variety of neurodegenerative diseases. The definition of the molecular bases of these pathologies is hampered by the transient nature of pre-fibrillar small-oligomers that are considered the toxic species. The ability of the peptide GNNQQNY to form amyloid-like structures makes it a good model to investigate the complex processes involved into amyloid fiber formation. By employing full atomistic replica exchange molecular dynamics simulations, we constructed the free energy surface of small assemblies of GNNQQNY to gain novel insights into the fiber formation process. The calculations suggest that the peptide exhibits a remarkable tendency to form both parallel and antiparallel β-sheets. The data show that GNNQQNY preference for parallel or antiparallel β-sheets is governed by a subtle balance of factors including assemblies’ size, sidechain-sidechain interactions and pH. The samplings analysis provides a rationale to the observed trends.  相似文献   

16.
Although our understanding of globular protein folding continues to advance, the irregular tertiary structures and high cooperativity of globular proteins complicates energetic dissection. Recently, proteins with regular, repetitive tertiary structures have been identified that sidestep limitations imposed by globular protein architecture. Here we review recent studies of repeat-protein folding. These studies uniquely advance our understanding of both the energetics and kinetics of protein folding. Equilibrium studies provide detailed maps of local stabilities, access to energy landscapes, insights into cooperativity, determination of nearest-neighbor interaction parameters using statistical thermodynamics, relationships between consensus sequences and repeat-protein stability. Kinetic studies provide insight into the influence of short-range topology on folding rates, the degree to which folding proceeds by parallel (versus localized) pathways, and the factors that select among multiple potential pathways. The recent application of force spectroscopy to repeat-protein unfolding is providing a unique route to test and extend many of these findings.  相似文献   

17.
Dentin and bone derive their mechanical properties from a complex arrangement of collagen type-I fibrils reinforced with nanocrystalline apatite mineral in extra- and intrafibrillar compartments. While mechanical properties have been determined for the bulk of the mineralized tissue, information on the mechanics of the individual fibril is limited. Here, atomic force microscopy was used on individual collagen fibrils to study structural and mechanical changes during acid etching. The characteristic 67 nm periodicity of gap zones was not observed on the mineralized fibril, but became apparent and increasingly pronounced with continuous demineralization. AFM-nanoindentation showed a decrease in modulus from 1.5 GPa to 50 MPa during acid etching of individual collagen fibrils and revealed that the modulus profile followed the axial periodicity. The nanomechanical data, Raman spectroscopy and SAXS support the hypothesis that intrafibrillar mineral etches at a substantially slower rate than the extrafibrillar mineral. These findings are relevant for understanding the biomechanics and design principles of calcified tissues derived from collagen matrices.  相似文献   

18.
Highly ordered lipids adsorbed or grafted on surfaces are known to provide protection and lubrication custom engineered surfaces. We have used atomic force microscopy (AFM) to measure adhesion and frictional properties of the outermost surfaces of a variety of human hairs with the aim of both understanding the role of 18-methyleicosanoic acid (18-MEA), an unusual branched-chain fatty acid covalently bound to the cuticle surface, and investigating how treatments or the ethnic origin affect this layer. Results show that an unmodified silicon nitride AFM tip is able to detect changes at the hair surface that can be related to the absence or presence of this layer due to treatment conditions and in particular that this monolayer has a lubricant effect.  相似文献   

19.
Understanding how cells maintain the functional proteome and respond to stress conditions is critical for deciphering molecular pathogenesis and developing treatments for conditions such as neurodegenerative diseases. Efforts towards finer quantification of cellular proteostasis machinery efficiency, phase transitions and local environment changes remain a priority. Herein, we describe recent developments in fluorescence-based strategy and methodology, building on the experimental toolkit, for the study of proteostasis (protein homeostasis) in cells. We hope this review can assist in bridging gaps between a multitude of research disciplines and promote interdisciplinary collaboration to address the crucial topic of proteostasis.  相似文献   

20.
The intracellular environment contains high concentrations of macromolecules occupying up to 30% of the total cellular volume. Presence of these macromolecules decreases the effective volume available for the proteins in the cell and thus increases the effective protein concentrations and stabilizes the compact protein conformations. Macromolecular crowding created by various macromolecules such as proteins, nucleic acids, and carbohydrates has been shown to have a significant effect on a variety of cellular processes including protein aggregation. Most studies of macromolecular crowding have used neutral, flexible polysaccharides that function primarily via excluded volume effect as model crowding agents. Here we have examined the effects of more rigid polysaccharides on protein structure and aggregation. Our results indicate that rigid and flexible polysaccharides influence protein aggregation via different mechanisms and suggest that, in addition to excluded volume effect, changes in solution viscosity and non-specific protein–polymer interactions influence the structure and dynamics of proteins in crowded environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号