首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intramolecular and intermolecular direct (unmediated) electron transfer was studied by electrochemical techniques in a flavohemoprotein cytochrome P450 BM3 (CYP102A1 from Bacillius megaterium) and between cytochromes b 5 and c. P450 BM3 was immobilized on a screen printed graphite electrode modified with a biocompatible nanocomposite material based on didodecyldimethylammonium bromide (DDAB) and gold nanoparticles. Analytical characteristics of SPG/DDAB/Au/P450 BM3 electrodes were studied with cyclic voltammetry and square wave voltammetry. The electron transport chain in P450 BM3 immobilized on the nanostructured electrode is: electrode → FAD → FMN → heme; i.e., electron transfer takes place inside the cytochrome, in evidence of functional interaction between its diflavin and heme domains. The effects of substrate (lauric acid) or inhibitor (metyrapone or imidazole) binding on the electro-chemical parameters of P450 BM3 were assessed. Electrochemical analysis has also demonstrated intermolecular electron transfer between electrode-immobilized and soluble cytochromes properly differing in redox potentials.  相似文献   

2.
P450 BM3 mutant can catalyze indole to indoxyl, and indoxyl can dimerize to form indigo. But the reaction catalyzed by P450 BM3 requires NADPH, as coenzyme regeneration is very important in this system. As we know, when glucose dehydrogenase oxidizes glucose to glucolactone, NADH or NADPH can be formed, which can contribute to NADPH regeneration in the reaction catalyzed by P450 BM3. In this paper, a recombinant Escherichia coli BL21 (pET28a (+)-P450 BM3-gdh0310) was constructed to co-express both P450 BM3 gene and glucose dehydrogenase (GDH) gene. To improve the expression level of P450 BM3 and GDH in E. coli and to avoid the complex and low-efficiency refolding operation in the purification procedure, the expression conditions were optimized. Under the optimized conditions, the maximum P450 BM3 and GDH activities amounted to 8173.13 and 0.045 U/mg protein, respectively. Then bioconversion of indole to indigo was carried out by adding indole and glucose to the culture after improved expression level was obtained under optimized conditions, and 2.9 mM (760.6 mg/L) indigo was formed with an initial indole concentration of 5 mM.  相似文献   

3.
Helvig C  Capdevila JH 《Biochemistry》2000,39(17):5196-5205
cDNAs coding for rat P450 2C11 fused to either a bacterial (the NADPH-cytochrome P450 BM3 reductase domain of P450 BM3) or a truncated form of rat NADPH-P450 reductases were expressed in Escherichia coli and characterized enzymatically. Measurements of NADPH cytochrome c reductase activity showed fusion-dependent increases in the rates of cytochrome c reduction by the bacterial or the mammalian flavoprotein (21 and 48%, respectively, of the rates observed with nonfused enzymes). Neither the bacterial flavoprotein nor the truncated rat reductase supported arachidonic acid metabolism by P450 2C11. In contrast, fusion of P450 2C11 to either reductase yielded proteins that metabolized arachidonic acid to products similar to those obtained with reconstituted systems containing P450 2C11 and native rat P450 reductase. Addition of a 10-fold molar excess of rat P450 reductase markedly increased the rates of metabolism by both fused and nonfused P450s 2C11. These increases occurred with preservation of the regioselectivity of arachidonic acid metabolism. The fusion-independent reduction of P450 2C11 by bacterial P450 BM3 reductase was shown by measurements of NADPH-dependent H(2)O(2) formation [73 +/- 10 and 10 +/- 1 nmol of H(2)O(2) formed min(-)(1) (nmol of P450)(-)(1) for the reconstituted and fused protein systems, respectively]. These studies demonstrate that (a) a self-sufficient, catalytically active arachidonate epoxygenase can be constructed by fusing P450 2C11 to mammalian or bacterial P450 reductases and (b) the P450 BM3 reductase interacts efficiently with mammalian P450 2C11 and catalyzes the reduction of the heme iron. However, fusion is required for metabolism and product formation.  相似文献   

4.
Bacillus megaterium P450 BM3 (BM3) is a P450/P450 reductase fusion enzyme, where the dimer is considered the active form in NADPH-dependent fatty acid hydroxylation. The BM3 W1046A mutant was generated, removing an aromatic “shield” from its FAD isoalloxazine ring. W1046A BM3 is a catalytically active NADH-dependent lauric acid hydroxylase, with product formation slightly superior to the NADPH-driven enzyme. The W1046A BM3 Km for NADH is 20-fold lower than wild-type BM3, and catalytic efficiency of W1046A BM3 with NADH and NADPH are similar in lauric acid oxidation. Wild-type BM3 also catalyzes NADH-dependent lauric acid hydroxylation, but less efficiently than W1046A BM3. A hypothesis that W1046A BM3 is inactive [15] helped underpin a model of electron transfer from FAD in one BM3 monomer to FMN in the other in order to drive fatty acid hydroxylation in native BM3. Our data showing W1046A BM3 is a functional fatty acid hydroxylase are consistent instead with a BM3 catalytic model involving electron transfer within a reductase monomer, and from FMN of one monomer to heme of the other [12]. W1046A BM3 is an efficient NADH-utilizing fatty acid hydroxylase with potential biotechnological applications.  相似文献   

5.
Cytochrome P450s are synthetically attractive hydroxylation catalysts. For cell-free applications, a constant supply of NAD(P)H can be very costly. Mediators such as Zn/Co(III)sep can be an alternative cofactor system to NAD(P)H. Several mutants of cytochrome P450 BM3 with improved electron transfer rate to Zn/Co(III)sep have been obtained in our group. P450 BM3 M7 (F87A V281G M354S R471C A1011T S1016G Q1022R) was immobilized on DEAE-650S, further entrapped with k-carrageenan together with zinc dust which function as electron source and catalase which removes produced hydrogen peroxide instantly. Immobilized P450 BM3 M7 were treated with 0.05% (v/v) glutaraldehyde to enhance operational stability. P450 BM3 M7 retained around 76% of its activity and conversions stayed above 80% in 10 batch cycles, indicating a high stability of immobilized P450 BM3 M7. To explore the synthetic potential, a small-scale bioreactor was developed to investigate the stability and efficiencies of P450 BM3 M9 (R47F F87A M238K V281G M354S D363H W575C A595T). P450 BM3 M9 was used for the continuous conversion of 3-phenoxytoluene in a plug flow reactor (PFR) since P450 BM3 M9 has a 3-fold higher activity for 3-phenoxytoluene compared to P450 BM3 M7 which was used for optimizing immobilization conditions with the highest activity for 12-pNCA assay. The reactor could be operated for 5 days with total turnover numbers (TTNs) over 2,000.  相似文献   

6.
P450 BM3: the very model of a modern flavocytochrome   总被引:4,自引:0,他引:4  
Flavocytochrome P450 BM3 is a bacterial P450 system in which a fatty acid hydroxylase P450 is fused to a mammalian-like diflavin NADPH-P450 reductase in a single polypeptide. The enzyme is soluble (unlike mammalian P450 redox systems) and its fusion arrangement affords it the highest catalytic activity of any P450 mono-oxygenase. This article discusses the fundamental properties of P450 BM3 and how progress with this model P450 has affected our comprehension of P450 systems in general.  相似文献   

7.
The evolutionary pressures that shaped the specificity and catalytic efficiency of enzymes can only be speculated. While directed evolution experiments show that new functions can be acquired under positive selection with few mutations, the role of negative selection in eliminating undesired activities and achieving high specificity remains unclear. Here we examine intermediates along the ‘lineage’ from a naturally occurring C12-C20 fatty acid hydroxylase (P450BM3) to a laboratory-evolved P450 propane monooxygenase (P450PMO) having 20 heme domain substitutions compared to P450BM3. Biochemical, crystallographic, and computational analyses show that a minimal perturbation of the P450BM3 fold and substrate-binding pocket accompanies a significant broadening of enzyme substrate range and the emergence of propane activity. In contrast, refinement of the enzyme catalytic efficiency for propane oxidation (∼ 9000-fold increase in kcat/Km) involves profound reshaping and partitioning of the substrate access pathway. Remodeling of the substrate-recognition mechanisms ultimately results in remarkable narrowing of the substrate profile around propane and enables the acquisition of a basal iodomethane dehalogenase activity as yet unknown in natural alkane monooxygenases. A highly destabilizing L188P substitution in a region of the enzyme that undergoes a large conformational change during catalysis plays an important role in adaptation to the gaseous alkane. This work demonstrates that positive selection alone is sufficient to completely respecialize the cytochrome P450 for function on a nonnative substrate.  相似文献   

8.
Cytochrome P450 BM3 mutants are promising biocatalysts for the production of drug metabolites. In the present study, the ability of cytochrome P450 BM3 mutants to produce oxidative metabolites of structurally related NSAIDs meclofenamic acid, mefenamic acid and tolfenamic acid was investigated. A library of engineered P450 BM3 mutants was screened with meclofenamic acid (1) to identify catalytically active and selective mutants. Three mono-hydroxylated metabolites were identified for 1. The hydroxylated products were confirmed by NMR analysis to be 3′-OH-methyl-meclofenamic acid (1a), 5-OH-meclofenamic acid (1b) and 4′-OH-meclofenamic acid (1c) which are human relevant metabolites. P450 BM3 variants containing V87I and V87F mutation showed high selectivity for benzylic and aromatic hydroxylation of 1 respectively. The applicability of these mutants to selectively hydroxylate structurally similar drugs such as mefenamic acid (2) and tolfenamic acid (3) was also investigated. The tested variants showed high total turnover numbers in the order of 4000–6000 and can be used as biocatalysts for preparative scale synthesis. Both 1 and 2 could undergo benzylic and aromatic hydroxylation by the P450 BM3 mutants, whereas 3 was hydroxylated only on aromatic rings. The P450 BM3 variant M11 V87F hydroxylated the aromatic ring at 4′ position of all three drugs tested with high regioselectivity. Reference metabolites produced by P450 BM3 mutants allowed the characterisation of activity and regioselectivity of metabolism of all three NSAIDs by thirteen recombinant human P450s. In conclusion, engineered P450 BM3 mutants that are capable of benzylic or aromatic hydroxylation of fenamic acid containing NSAIDs, with high selectivity and turnover numbers have been identified. This shows their potential use as a greener alternative for the generation of drug metabolites.  相似文献   

9.
A cytochrome P450BM3‐catalyzed reaction system linked by a two‐step cofactor regeneration was investigated in a cell‐free system. The two‐step cofactor regeneration of redox cofactors, NADH and NADPH, was constructed by NAD+‐dependent bacterial glycerol dehydrogenase (GLD) and bacterial soluble transhydrogenase (STH) both from Escherichia coli. In the present system, the reduced cofactor (NADH) was regenerated by GLD from the oxidized cofactor (NAD+) using glycerol as a sacrificial cosubstrate. The reducing equivalents were subsequently transferred to NADP+ by STH as a cycling catalyst. The resultant regenerated NADPH was used for the substrate oxidation catalyzed by cytochrome P450BM3. The initial rate of the P450BM3‐catalyzed reaction linked by the two‐step cofactor regeneration showed a slight increase (approximately twice) when increasing the GLD units 10‐fold under initial reaction conditions. In contrast, a 10‐fold increase in STH units resulted in about a 9‐fold increase in the initial reaction rate, implying that transhydrogenation catalyzed by STH was the rate‐determining step. In the system lacking the two‐step cofactor regeneration, 34% conversion of 50 μM of a model substrate (p‐nitrophenoxydecanoic acid) was attained using 50 μM NADPH. In contrast, with the two‐step cofactor regeneration, the same amount of substrate was completely converted using 5 μM of oxidized cofactors (NAD+ and NADP+) within 1 h. Furthermore, a 10‐fold dilution of the oxidized cofactors still led to approximately 20% conversion in 1 h. These results indicate the potential of the combination of GLD and STH for use in redox cofactor recycling with catalytic quantities of NAD+ and NADP+. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

10.
Cytochrome P450foxy (P450foxy, CYP505) is a fused protein of cytochrome P450 (P450) and its reductase isolated from the fungus Fusarium oxysporum, which catalyzes the subterminal (omega-1 approximately omega-3) hydroxylation of fatty acids. Here, we produced, purified and characterized a fused recombinant protein (rP450foxy) using the Escherichia coli expression system. Purified rP450foxy was catalytically and spectrally indistinguishable from the native protein, but most of the rP450foxy was recovered in the soluble fraction of E. coli cells unlike the membrane-bound native protein. The results are consistent with our notion that the native protein is targeted to the membrane by a post-translational modification mechanism. We also discovered that P450foxy could use shorter saturated fatty acid chains (C9 and C10) as a substrate. The regiospecificity (omega-1 approximately omega-3) of hydroxylation due to the enzymatic reaction for the short substrates (decanoate, C10; undecanoate, C11) was the same as that for longer substrates. Steady state kinetic studies showed that the kcat values for all substrates tested (C9-C16) were of the same magnitude (1200-1800 min-1), whereas the catalytic efficiency (kcat/Km) was higher for longer fatty acids. Substrate inhibition was observed with fatty acid substrates longer than C13, and the degree of inhibition increased with increasing chain length. This substrate inhibition was not apparent with P450BM3, a bacterial counterpart of P450foxy, which was the first obvious difference in their catalytic properties to be identified. Kinetic data were consistent with the inhibition due to binding of the second substrate. We discuss the inhibition mechanism based on differences between P450foxy and P450BM3 in key amino acid residues for substrate binding.  相似文献   

11.
BackgroundCytochrome P450 (P450) BM3, from Bacillus megaterium, catalyzes a wide range of chemical reactions and is routinely used as a model system to study mammalian P450 reactions and structure.MethodsThe metabolism of 2,6-di-tert-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadienone (BHTOOH) and 2-tert-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadien-1-one (BMPOOH) was examined with P450 BM3 and with the conserved T268 and F87 residues mutated to investigate their effects on organic hydroperoxide metabolism. To determine the effects of the mutations on the active site volume and architecture, the X-ray crystal structure of the F87A/T268A P450 BM3 heme domain (BMP) was determined and compared to previous structures. To investigate the interactions of the substrates with the F87 and T268 residues, BHTOOH and BMPOOH were docked into the BMP X-ray crystal structures.ResultsLower metabolism of BHTOOH and BMPOOH was observed in the WT P450 BM3 and the T268A P450 BM3 mutant than in the F87A and F87A/T268A P450 BM3 mutants. Large differences were found in the F–G loop regions and active site cavity volumes for the F87A mutated structures.ConclusionsAnalysis of the metabolism, X-ray crystal structures, and molecular docking simulations suggests that P450 BM3 activity toward BHTOOH and BMPOOH is mediated through substrate recognition by T268 and F87, and the active site cavity volume. Based on this information, a simplified representation is presented with the relative orientation of organic hydroperoxides in the P450 BM3 active site.General significanceThe metabolism results and structural analysis of this model P450 allowed us to rationalize the structural factors that influence organic hydroperoxide metabolism.  相似文献   

12.
In the model P450 BM3 system, the P450 is fused to its diflavin reductase partner in a single polypeptide. BM3 dimerizes in solution, but the catalytic relevance of the phenomenon was hitherto unknown. We show that BM3 fatty acid hydroxylase specific activity decreases sharply at low enzyme concentrations, consistent with separation of active dimer into inactive monomer. Reductase-dependent specific activities are maintained or enhanced at low concentration, suggesting inter-flavin electron transfer is unaffected. Fatty acid oxidation is reconstituted by mixing inactive oxygenase (A264H) and FMN-depleted (G570D) mutants, demonstrating that inter-monomer (FMN(1)-to-heme(2)) electron transfer supports oxygenase activity in the BM3 dimer.  相似文献   

13.

To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the regeneration of NADPH.

The well-expressed fusion enzyme was purified and analyzed in comparison to the parent enzymes. Using lauric acid as substrate for P450BM3, it was found that the fusion enzyme had similar substrate affinity and hydroxylation selectivity while it displayed a significantly higher activity than the non-fused monooxygenase. Phosphite-driven conversions of lauric acid at restricted NADPH concentrations confirmed multiple turnovers of the cofactor. Interestingly, both the fusion enzyme and the native P450BM3 displayed enzyme concentration dependent activity and the fused enzyme reached optimal activity at a lower enzyme concentration. This suggests that the fusion enzyme has an improved tendency to form functional oligomers.

To explore the constructed phosphite-driven P450BM3 as a biocatalyst, conversions of the drug compounds omeprazole and rosiglitazone were performed. PTDH-P450BM3 driven by phosphite was found to be more efficient in terms of total turnover when compared with P450BM3 driven by NADPH. The results suggest that PTDH-P450BM3 is an attractive system for use in biocatalytic and drug metabolism studies.

  相似文献   

14.
Cytochrome P450 BM3, of bacterial origin, is one of only five isozymes of the ubiquitous family of over 400 metabolizing heme proteins with a known crystal structure and only one of two with both substrate-free and substrate-bound forms determined. P450 BM3 is of particular interest since it has a similar function and similar substrates as mammalian P450s particularly of the 4A subfamily. Thus, the extent to which the substrate-free form of P450 BM3 undergoes a conformational change upon binding of a typical fatty acid substrate, palmitoleic acid, has been the subject of recent active experimental effort. Surprisingly, direct examination of the substrate-free (pdb2hpd.ent and pdb2bmh.ent) and substrate-bound (pdb1fag.ent) forms do not provide a clear answer to this question. The main reason for this ambiguity is that the two substrate-free monomers reported in the crystal structures themselves have significantly different conformations from each other, one with a more open substrate-access channel than the other. Since there is no way to tell to which substrate-free form the substrate binds, the effect of substrate binding cannot be deduced directly from comparisons of the experimental substrate-bound and substrate-free forms. The computational studies reported here have been designed to more robustly establish the effect of substrate binding on this isozyme. Specifically, molecular dynamics simulations were performed for each of the two substrate-free forms found in the asymmetric unit of the X-ray structure and for the two corresponding substrate-bound forms, constructed by docking palmitloeic acid into each of them. Comparisons of the results showed that palmitoleic acid binding had little effect on the conformation of the more closed substrate-free form of P450 BM3. By contrast, in the more open substrate-free form, this same substrate induced a closing of the entrance to the substrate-binding channel. The MD averaged structure of these two complexes obtained from docking of pamitoleic acid into the two asymmetric units of the substrate-free form were also compared to that obtained starting with the X-ray structure of the substrate-bound form. These results taken together led to the conclusion that, if indeed the substrate induces conformational changes in P450 BM3, the mouth of the substrate-access channel first closes down in response to the presence of the substrate, followed by rotation of the F-G domain to further optimize the P450 BM3-substrate interaction that would occur at a later stage.  相似文献   

15.
Murataliev MB  Feyereisen R 《Biochemistry》2000,39(41):12699-12707
NADP(H) binding is essential for fast electron transfer through the flavoprotein domain of the fusion protein P450BM3. Here we characterize the interaction of NADP(H) with the oxidized and partially reduced enzyme and the effect of this interaction on the redox properties of flavin cofactors and electron transfer. Measurements by three different approaches demonstrated a relatively low affinity of oxidized P450BM3 for NADP(+), with a K(d) of about 10 microM. NADPH binding is also relatively weak (K(d) approximately 10 microM), but the affinity increases manyfold upon hydride ion transfer so that the active 2-electron reduced enzyme binds NADP(+) with a K(d) in the submicromolar range. NADP(H) binding induces conformational changes of the protein as demonstrated by tryptophan fluorescence quenching. Fluorescence quenching indicated preferential binding of NADPH by oxidized P450BM3, while no catalytically competent binding with reduced P450BM3 could be detected. The hydride ion transfer step, as well as the interflavin electron transfer steps, is readily reversible, as demonstrated by a hydride ion exchange (transhydrogenase) reaction between NADPH and NADP(+) or their analogues. Experiments with FMN-free mutants demonstrated that FAD is the only flavin cofactor required for the transhydrogenase activity. The equilibrium constants of each electron transfer step of the flavoprotein domain during catalytic turnover have been calculated. The values obtained differ from those calculated from equilibrium redox potentials by as much as 2 orders of magnitude. The differences result from the enzyme's interaction with NADP(H).  相似文献   

16.
Cytochrome P450 monooxygenases (P450s) have enormous potential in the production of oxychemicals, due to their unparalleled regio- and stereoselectivity. The Bacillus megaterium P450 BM3 enzyme is a key model system, with several mutants (many distant from the active site) reported to alter substrate selectivity. It has the highest reported monooxygenase activity of the P450 enzymes, and this catalytic efficiency has inspired protein engineering to enable its exploitation for biotechnologically relevant oxidations with structurally diverse substrates. However, a structural rationale is lacking to explain how these mutations have such effects in the absence of direct change to the active site architecture. Here, we provide the first crystal structures of BM3 mutants in complex with a human drug substrate, the proton pump inhibitor omeprazole. Supported by solution data, these structures reveal how mutation alters the conformational landscape and decreases the free energy barrier for transition to the substrate-bound state. Our data point to the importance of such “gatekeeper” mutations in enabling major changes in substrate recognition. We further demonstrate that these mutants catalyze the same 5-hydroxylation reaction as performed by human CYP2C19, the major human omeprazole-metabolizing P450 enzyme.  相似文献   

17.
The gene of a fatty-acid hydroxylase of the fungus Fusarium oxysporum (P450foxy) was cloned and expressed in yeast. The putative primary structure revealed the close relationship of P450foxy to the bacterial cytochrome P450BM3, a fused protein of cytochrome P450 and its reductase from Bacillus megaterium. The amino acid sequence identities of the P450 and P450 reductase domains of P450foxy were highest (40.6 and 35.3%, respectively) to the corresponding domains of P450BM3. Recombinant P450foxy expressed in yeast was catalytically and spectrally indistinguishable from the native protein, except most of the recombinant P450foxy was recovered in the soluble fraction of the yeast cells, in marked contrast to native P450foxy, which was exclusively recovered in the membrane fraction of the fungal cells. This difference implies that a post (or co)-translational mechanism functions in the fungal cells to target and bind the protein to the membrane. These results provide conclusive evidence that P450foxy is the eukaryotic counterpart of bacterial P450BM3, which evokes interest in the evolutionary aspects concerning the P450 superfamily along with its reducing systems. P450foxy was classified in the new family, CYP505.  相似文献   

18.
Bacillus megaterium flavocytochrome P450 BM3 (BM3) is a high activity fatty acid hydroxylase, formed by the fusion of soluble cytochrome P450 and cytochrome P450 reductase modules. Short chain (C6, C8) alkynes were shown to be substrates for BM3, with productive outcomes (i.e. alkyne hydroxylation) dependent on position of the carbon-carbon triple bond in the molecule. Wild-type P450 BM3 catalyses ω-3 hydroxylation of both 1-hexyne and 1-octyne, but is suicidally inactivated in NADPH-dependent turnover with non-terminal alkynes. A F87G mutant of P450 BM3 also undergoes turnover-dependent heme destruction with the terminal alkynes, pointing to a key role for Phe87 in controlling regioselectivity of alkyne oxidation. The terminal alkynes access the BM3 heme active site led by the acetylene functional group, since hydroxylated products are not observed near the opposite end of the molecules. For both 1-hexyne and 1-octyne, the predominant enantiomeric product formed (up to ~90%) is the (S)-(-)-1-alkyn-3-ol form. Wild-type P450 BM3 is shown to be an effective oxidase catalyst of terminal alkynes, with strict regioselectivity of oxidation and potential biotechnological applications. The absence of measurable octanoic or hexanoic acid products from oxidation of the relevant 1-alkynes is also consistent with previous studies suggesting that removal of the phenyl group in the F87G mutant does not lead to significant levels of ω-oxidation of alkyl chain substrates.  相似文献   

19.
This paper reports on the application of the molecular Lego approach to P450 enzymes. Protein domains are used as catalytic (P450 BM3 haem domain and human P450 2E1) or electron transfer (flavodoxin and P450 BM3 reductase) modules. The objectives are to build assemblies with improved electrochemical properties, to construct soluble human P450 enzymes, and to generate libraries of new P450 catalytic modules based on P450 BM3. A rationally designed, gene-fused assembly (BMP-FLD) was obtained from the soluble haem domain of cytochrome P450 BM3 from Bacillus megaterium (BMP) and flavodoxin from Desulfovibrio vulgaris (FLD). The assembly was expressed successfully and characterised in its active form, displaying improved electrochemical properties. Solubilisation of the human, membrane-bound P450 2E1 (2E1) was achieved by fusing key elements of the 2E1 enzyme with selected parts of P450 BM3. An assembly containing the first 54 residues of P450 BM3, the whole sequence of P450 2E1 from residue 81 and the reductase domain of P450 BM3 was constructed. The 2E1-BM3 assembly was successfully expressed in the cytosol of Escherichia coli. The soluble form of 2E1-BM3 was reduced in carbon monoxide atmosphere and displayed the typical absorption peak at 450 nm, characteristic of a folded and active P450 enzyme. Finally, the alkali method previously developed in this laboratory was used to screen for P450 activity within a library of random mutants of P450 BM3. A number of variants active towards non-physiological substrates, such as pesticides and polyaromatic hydrocarbons were identified, providing new P450 catalytic modules. The combination of these three areas of research provide interesting tools for exploitation in nanobiotechnology.  相似文献   

20.
Selective oxy-functionalization of nonactivated C-H bonds is a long-standing “dream reaction” of organic synthesis for which chemical methodology is not well developed. Mono-oxygenase enzymes are promising catalysts for such oxy-functionalization to establish. Limitation on their applicability arises from low reaction output. Here, we showed an integrated approach of process engineering to the intensification of the cytochrome P450 BM3-catalyzed hydroxylation of dodecanoic acid (C12:0). Using P450 BM3 together with glucose dehydrogenase for regeneration of nicotinamide adenine dinucleotide phosphate (NADPH), we compared soluble and co-immobilized enzymes in O2-gassed and pH-controlled conversions at high final substrate concentrations (≥40mM). We identified the main engineering parameters of process output (i.e., O2 supply; mixing correlated with immobilized enzyme stability; foam control correlated with product isolation; substrate solubilization) and succeeded in disentangling their complex interrelationship for systematic process optimization. Running the reaction at O2-limited conditions at up to 500-ml scale (10% dimethyl sulfoxide; silicone antifoam), we developed a substrate feeding strategy based on O2 feedback control. Thus, we achieved high reaction rates of 1.86g·L−1·hr−1 and near complete conversion (≥90%) of 80mM (16g/L) C12:0 with good selectivity (≤5% overoxidation). We showed that “uncoupled reaction” of the P450 BM3 (~95% utilization of NADPH and O2 not leading to hydroxylation) with the C12:0 hydroxylated product limited the process efficiency at high product concentration. Hydroxylated product (~7g; ≥92% purity) was recovered from 500ml reaction in 82% yield using ethyl-acetate extraction. Collectively, these results demonstrate key engineering parameters for the biocatalytic oxy-functionalization and show their integration into a coherent strategy for process intensification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号