首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-Substituted-pyrido[2,3-d]pyrimidin-4(1H)-ones 4ac were synthesized by oxidation of 4-substituted-dihydropyrido[2,3-d]pyrimidin-4(1H)-ones 3ac which were in turn prepared from arylidenemalononitriles 1ac and 6-aminothiouracil 2. The reactivity of compounds 4ac towards some reagents such as formamide, carbon disulfide, urea, thiourea, formic and acetic acids were studied. All the synthesized compounds were characterized by spectroscopic means and elemental analysis. Compound 4c exhibited 64% and 72% analgesic activity. Also, compound 4b showed 50% and 65% anti-inflammatory activity. Interestingly these compounds showed one-third of ulcer index of the reference aspirin and diclofenac.  相似文献   

2.
Four pyrazolopyrimidine series were prepared with a substitution at position- 4 by Schiff base, triazole, oxadiazole and pyrazole moieties (7a-f, 8a,b, 9a-f, 10a,b and 13a,b), respectively. All the synthesized compounds were evaluated in vitro against COX-2 and in vivo against carrageenan-induced rat paw edema as anti-inflammatory agents. Regarding the anti-inflammatory activity (AI) compounds 7c, 7f, 8a, and 9a showed higher activity with respect to celecoxib. Compounds 9a, 7d, and 7f were closely selective to celecoxib. Also, 7c and 7d were safer than indomethacin and similar to celecoxib as resulted from the histopathological study. In addition, the docking study that showed the binding mode of prominent pyrazolopyrimidine compounds inside the COX-2 receptor. Formation of unexpected pyrazole 13a and 13b was briefly discussed using 2D NMR.  相似文献   

3.
In continuation of our research program aiming at developing new potent antimicrobial agents, new series of substituted 3,4-dihydrothieno[2,3-d]pyrimidines was synthesized. The newly synthesized compounds were preliminary tested for their in vitro activity against six bacterial and three fungal strains using the agar diffusion technique. The results revealed that compounds 7, 8a, 10b, 10d and 11b exhibited half the potency of levofloxacine against the Gram-negative bacterium, Pseudomonas aeruginosa, while compounds 5a, 8b, 10c and 12 displayed half the potency of levofloxacine against Proteus Vulgaris. Whereas, compounds 7, 10b, 10d and 11b showed half the activity of ampicillin against the Gram-positive bacterium, B. subtilis. Most of the compounds showed high antifungal potency. Compounds 3, 6, 7, 9b, 10a, 11a, 11b, 15 and 16 exhibited double the potency of clotrimazole against A. fumigatus. While compounds 3, 4, 5a, 5b, 9b, 10a, 10b, 10c, 13, 15, 16 and 18 displayed double the activity of clotrimazole against R. oryazae. Molecular docking studies of the active compounds with the active site of the B. anthracis DHPS, showed good scoring for various interactions with the active site of the enzyme compared to the co-crystallized ligand.  相似文献   

4.
5.
A series of novel 2-imino-4-thiazolidinone derivatives 4a,b was synthesized through reaction of unsymmetrical thioureas 3a,b with chloroacetic acid. Condensation of 4a,b with aromatic aldehydes 5a-eyielded the corresponding 5-arylidene derivatives 6a-j. In addition, the reaction of 4a,b with 4-arylazo-3-hydroxybenzaldehydes 8a-c furnished the respective mono-arylazo-4-thiazolidinones10a-f. All the newly synthesized compounds were confirmed by their elemental analysis and spectral data. The antifungal activity of the newly synthesized compounds was assessed and the compounds 6d, 6e, 6i, 6j, 9a,b and 10a-frevealedhigher antifungal activity towards Alternaria solani than to the standard Ridomil gold plus. Moreover, the DNA toxicity of 4-thiazolidinone derivatives 6d, 9a, 10b, 10c and 10f on the nucleic acid of Alternaria solani (KT354939) was performed and the results showed qualitatively more than 70% cleavage. Also, compounds 6i, 6j, 9b, 10c and 10f were docked inside the active site of 1ZOYenzyme and suitable binding with the active site of amino acids, were displayed according to their bond lengths, angles and conformational energy.  相似文献   

6.
Heterocyclization of steroids were reported to give biologically active products where ring D modification occured. Estrone (1) was used as a template to develop new heterocyclic compounds. Ring D modification of 1 through its reaction with cyanoacetylhydrazine and elemental sulfur gave the thiophene derivative 3. The latter compound reacted with acetophenone derivatives 4a-c to give the hydrazide-hydrazone derivatives 5a-c, respectively. In addition, compound 3 formed thiazole derivatives through its first reaction with phenylisothiocyanate to give the thiourea derivative 9 followed by the reaction of the later with α-halocarbonyl compounds. In the present work a series of novel estrone derivatives were designed, synthesized and evaluated for their in vitro biological activities against c-Met kinase, and six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG and SMMC-7721). The most promising compounds 5b, 5c, 11a, 13c, 15b, 15c, 15d, 17a and 17b were further investigated against the five tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR. Compounds 5b, 15d, 17a and 17b were selected to examine their Pim-1 kinase inhibition activity where compounds 15d and 17b showed high activities. Molecular docking of some of the most potent compounds was demonstrated.  相似文献   

7.
In this investigation, we describe a new approach to chiral synthesis of chloroquine and its analogues. All tested compounds displayed potent activity against chloroquine sensitive as well as chloroquine resistant strains of Plasmodium falciparum in vitro and Plasmodium yoelii in vivo. Compounds S-13b, S-13c, S-13d and S-13i displayed excellent in vitro antimalarial activity with an IC50 value of 56.82, 60.41, 21.82 and 7.94 nM, respectively, in the case of resistant strain. Furthermore, compounds S-13a, S-13c and S-13d showed in vivo suppression of 100% parasitaemia on day 4 in the mouse model against Plasmodium yoelii when administered orally. These results underscore the application of synthetic methodology and need for further lead optimization.  相似文献   

8.
A search for potent antiproliferative agents has prompted to design and synthesize aryloxy bridged and amide linked dimeric 1,2,3-triazoles (7aj) by using 1,3-dipolar cycloaddition reaction between 2-azido-N-phenylacetamides (4ae) and bis(prop-2-yn-1-yloxy)benzenes (6ab) via copper (I)-catalyzed click chemistry approach with good to excellent yields. All the newly synthesized compounds have been screened for their in vitro antiproliferative activities against two human cancer cell lines. The compounds 7d, 7e, 7h, 7i and 7j have revealed promising antiproliferative activity against human breast cancer cell line (MCF-7), whereas, the compounds 7a, 7b, 7c, 7i and 7j were observed as potent antiproliferative agents against human lung cancer cell line (A-549). The active compounds against MCF-7 have been also analysed for their mechanism of action by the enzymatic study, which shows that the compounds 7d, 7h and 7j were acts as active EGFR tyrosine kinase phosphorylation inhibitors. In support to this biological study, the molecular docking as well as in silico ADME properties of all the newly synthesized hybrids were predicted.  相似文献   

9.
A water extract of the leaves of Suregada glomerulata (Euphorbiaceae) was found to inhibit rat small intestinal α-glucosidase. An examination of the extract afforded 20 iminosugars including one pyrrolidine and 19 piperidines. The structures of the 10 new compounds (1120) were determined by NMR, and MS spectroscopic data analyses, and chemical correlations. The novelty of the identified compounds mainly stems from the loss of a hydroxy at C-4 and the presence of an 8-hydroxyoctyl side chain. Nine N-alkyl derivatives including N-methyl (1a, 8a, and 13a), N-butyl (1b, 2b, and 9b) and N,N-dimethyl (1c, 2c, and 9c) were synthesized. The compounds were tested for rat small intestinal α-glucosidase inhibitory activity. In total, 15 compounds, including compounds 11, 12, 15, and 19 and the three derivatives 8a, 9b, and 13a, showed inhibitory activity with IC50 values less than 40 μM. In vivo results showed that total alkaloids of S. glomerulata (10 mg/kg) and four major iminosugars 1, 2, 3, and 9 (10 mg/kg) can lower the postprandial blood glucose level after sucrose and starch load in healthy male ICR mice.  相似文献   

10.
The synthesis of the unsaturated 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl nucleosides of 5-fluorouracil (6a), N6-benzoyl adenine (6b), uracil (6c), thymine (6d) and N4-benzoyl cytosine (6e), is described. Monoiodination of compounds 1a,b, followed by acetylation, catalytic hydrogenation and finally regioselective 2′-O-deacylation afforded the partially acetylated dideoxynucleoside analogues of 5-fluorouracil (5a) and N6-benzoyl adenine (5b), respectively. Direct oxidation of the free hydroxyl group at the 2′-position of 5a,b, with simultaneous elimination reaction of the β-acetoxyl group, afforded the desired unsaturated 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl derivatives 6a,b. Compounds 1c-e were used as starting materials for the synthesis of the dideoxy unsaturated carbonyl nucleosides of uracil (6c), thymine (6d) and N4-benzoyl cytosine (6e). Similarly a protection-selective deprotection sequence followed by oxidation of the free hydroxyl group at the 2′-position of the dideoxy benzoylated analogues 9c-e with simultaneous elimination reaction of the β-benzoyl group, gave the desired nucleosides 6c-e. None of the compounds was inhibitory to a broad spectrum of DNA and RNA viruses at subtoxic concentrations. The 5-fluorouracil derivative 6a was more cytostatic (50% inhibitory concentration ranging between 0.2 and 12 μM) than the other compounds.  相似文献   

11.
As a continuation of previous research on a new series of potent and efficacious P-gp-dependent multidrug resistant (MDR) reversers with a N,N-bis(cyclohexanol)amine scaffold, we have designed and synthesized several analogs by modulation of the two aromatic moieties linked through ester functions to the N,N-bis(cyclohexanol)amine, aiming to optimize activity and to extend structure–activity relationships (SAR) within the series. This scaffold, when esterified with two different aromatic carboxylic acids, gives origin to four geometric isomers (cis/trans, trans/trans, cis/cis and trans/cis).The new compounds were tested on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay. Most of them resulted in being potent modulators of the extrusion pump P-gp, showing potency values ([I]0.5) in the submicromolar and nanomolar range. Of these, compounds 2b, 2c, 3d, 5ad and 6d, showed excellent efficacy with a αmax close to 1. Selected compounds (2d, 3a, 3b, 5ad) were further studied to evaluate their doxorubicin cytotoxicity potentiation (RF) on doxorubicin-resistant erythroleukemia K562 cells and were found able to enhance significantly doxorubicin cytotoxicity on K562/DOX cells.The results of both pirarubicin uptake and the cytotoxicity assay, indicate that the new compounds of the series are potent P-gp-mediated MDR reversers. They present a structure with a mix of flexible and rigid moieties, a property that seems critical to allow the molecules to choose the most productive of the several binding modes possible in the transporter recognition site.In particular, compounds 5c and 5d, similar to the already reported analogous isomers 1c and 1d,29 are potent and efficacious modulators of P-gp-dependent MDR and may be promising leads for the development of MDR-reversal drugs.  相似文献   

12.
In search for a new analgesic and anti-inflammatory agent with improved potency, we designed and synthesized a series of 3,2-(4,5-dihydro-5-(4-morphilinophenyl)-1H-pyarazol-3-yl)phenols 6(ag) and its N-phenylpyrazol-1-carbothioamide 7(ag) by Claisan–Schmidt condensation followed by the reaction of hydrazine hydrate. All the synthesized compounds were assayed for their in vivo analgesic and anti-inflammatory activities. All the compounds synthesized showed the potential to demonstrate analgesic and anti-inflammatory activity, of particular interest compounds 6a, 6b, 6g, 7a, 7d and 7g were found comparable to Diclofenac.  相似文献   

13.
A series of novel furo[2,3-b]pyridine-2-carboxamide 4ah/pyrido[3′,2′:4,5]furo[3,2-d] pyrimidin-4(3H)-one derivatives 5ap were prepared from pyridin 2(1H) one 1 via selective O-alkylation with α-bromoethylester followed by cyclization, then reaction with different aliphatic primary amines to obtain 4 and further reaction with triethyl orthoacetate/triethyl orthoformate. Also prepared novel furo[2,3-b]pyridine-2-carbohydrazide Schiff’s bases 7ah and pyrido [3′,2′:4,5]furo[3,2-d]pyrimidin-4(3H)-one derivatives 8ah starting from furo[2,3-b]pyridine carboxylate derivatives 3 by reaction with hydrazine hydrate to form 6 and reaction with diverse substituted aldehydes and cyclization. Products 4ah, 5ap, 7ah and 8ah were screened against four human cancer cell lines (HeLa, COLO205, Hep G2 and MCF 7) and one normal cell line (HEK 293). Compounds 4e, 4f, 4g, 5h, 7c, 7d, 7e and 7f showed significant anticancer activity against all the cell lines at micro molar concentration and found to be non-toxic to normal cell line. Studies for HeLa, COLO205 and MCF-7 using CoMFA and CoMSIA. Models from 3D-QSAR provided a strong basis for future rational design of more active and selective HeLa, COLO205 and MCF-7 cell line inhibitors.  相似文献   

14.
A series of novel pyrazolo[3,4-b]pyridine and pyrimidine functionalized 1,2,3-triazole derivatives 8ag and 9ag were prepared starting from 6-trifluoromethylpyridine-2(1H)one 2 via selective O-alkylation, followed by cyclisation using hydrazine hydrate to obtain 6-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-3-amine 4. Compound 4 was diazotized followed by reaction with sodium azide, resulted in 3-azido-6-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridine 5. Compound 5 was further cyclized with N-/O-propargylated pyrimidine derivatives under Sharpless conditions and obtained compounds 6 and 7, respectively. Each set of compounds 6 and 7 were alkylated with different alkyl halides and obtained respective products 8 and 9. All the products were screened for cytotoxicity against four human cancer cell lines such as A549-Lung (CCL-185), MCF7-Breast (HTB-22), DU145-Prostate (HTB-81) and HeLa-Cervical (CCL-2), compounds 9d, 9e and 9f which showed promising activity have been identified. The products were also screened for antimicrobial, anti bio-film and MBC activities. Promising compounds in each case have been identified.  相似文献   

15.
Tamoxifen (TAM) is used for the treatment and prevention of estrogen receptor positive breast cancer. However, the limited activity, toxicity and the development of resistance raised the current need for new potent nontoxic antiestrogen. Six novel TAM analogues 5af were synthesized using McMurry olefination reaction. Replacement of the dimethylamino group in TAM by piperidino, piperazino or N-methyl piperazino, substituting the phenyl ring with florine atom at p-position and changing the ethyl group by methyl, afforded compounds showing comparable activity to TAM (1). Compounds 5c and 5e showed significant increase in antiproliferative activity in two breast cancer cell lines (MCF-7 and MDA-MB-231) compared to tamoxifen, while other compounds showed similar activity. The increased anticancer activity of compounds 5c and 5e was attributed to their ability to induce ER-independent cell death.  相似文献   

16.
A series of novel 10-((1H-indol-3-yl)methylene)-7-aryl-7,10-dihydro-5H-benzo[h]thiazolo[2,3-b]quinazolin-9(6H)-ones (8at) have been synthesized in good yields by the reaction of benzo[h]quinazoline-2(1H)-thiones (4af) with 2-chloro-N-phenylacetamide (5) followed by Knoevenagel condensation with various indole-3-carbaldehydes (7ad) under conventional method. All the synthesized compounds were characterized by spectral studies and screened for their in vitro anticancer and antimicrobial activities. Compound 8c has exhibited excellent activity against MCF-7 (breast cancer cell line) than the standard drug Doxorubicin. Compound 8d against both the cancer cell lines, 8q against MCF-7 and 8c, 8h against HepG2 have also shown good activity. Remaining compounds have shown moderate activity against both the cell lines. Antimicrobial activity revealed that, the compound 8q and 8t against Staphylococcus aureus and 8i, 8k, 8l, 8q & 8t against Klebsiella pneumoniae have shown equipotent activity on comparing with the standard drug Streptomycin. Remaining compounds have shown significant antibacterial and comparable antifungal activities against all the tested microorganisms.  相似文献   

17.
New thiazolopyrimidine and dithiazolopyrimidinone derivatives 211 were synthesized and estimated for antimicrobial activity against S. aureus, B. cereus, E. coli, C. albicans, A. fumigatus and A. terreus. The attained results proved that 4, 8a and 11g have significant effectiveness against S. aureus and B. cereus. On the other hand, 7, 10b, 10c and 11h exhibited prominent activity against B. cereus, whereas 8a, 10b and 11g were proved to be active against E. coli. From another point of view, 4 and 8a exhibited promising efficacy against A. fumigatus and A. terreus; moreover, 8a showed outstanding efficacy against C. albicans. Quorum-sensing inhibitory activity of the new compounds was esteemed against C. violaceum, where 7, 8a, 9b, 10a-c, 11d and 11g have acceptable efficacy. In vitro antitumor efficacy of the same compounds against HepG2, HCT-116 and MCF-7 cancer cell lines was also tested. Compounds 4 and 11h showed enhanced effectiveness against the three cell lines, whereas 10b displayed eminent activity against HCT-116 and MCF-7 cells. Moreover, 11a was found to have outstanding activity against MCF-7 cells, while 11i showed promising efficacy against HepG2 cells. The in vitro active antitumor compounds were evaluated for in vivo antitumor effectiveness against EAC in mice, as well as in vitro cytotoxicity against WI38 and WISH normal cells. Results manifested that 4 has the strongest in vivo activity, and that all investigated analogs are less cytotoxic than 5-FU against both normal cell lines. DNA-binding affinity of the active compounds was examined, where 4, 8a, 10c, 11d and 11g,h displayed strong affinity. In silico studies proved that majority of the analyzed compounds are in conformity with the optimum needs for good oral absorption.  相似文献   

18.
Click reaction approach toward the synthesis of two sets of novel 1,2,3-triazolyl linked uridine derivatives 19a19g and 21a21g was achieved by Cu(I)-catalyzed 1,3-dipolar cycloaddition of 5′-azido-5′-deoxy-2′,3′-O-(1-methylethylidene)uridine (17) with propargylated ether of phenols 18a18g and propargylated esters 20a20g. Structure of one of the representative compound 19d was unambiguously confirmed by X-ray crystallography. Chitin synthase inhibition study of all these compounds 19a19g and 21a21g was carried out to develop antifungal strategy. Compounds 19d, 19e, 19f, and 21f were identified as potent chitin synthase inhibitors by comparing with nikkomycin. Compounds 19a, 19b, 19c, 19d, 21a, and 21b showed good antifungal activity against human and plant pathogens. Compounds 19a, 19b, 19f, 21c, 21f, and 21g were identified as lead chitin synthase inhibitors for further modifications by comparing results of inhibition of growth, % germ tube formation and chitin synthase activity.  相似文献   

19.
The strain Absidia cylindrospora was chosen among eight fungal strains for the biotransformation of unsaturated lactones 1ac. The processes were carried out by means of shaken cultures. The compounds 1a and 1b were efficiently converted into the corresponding trans-epoxylactones (2a and 2b), whereas the transformation of 1c gave the unsaturated hydroxylactone 3, with the tertiary hydroxy group introduced in the allylic position. The compound 2b was obtained with 100% ee. The structures of compounds 2a and 2b were fully confirmed by the X-ray analysis, which showed the half boat and half chair conformation of cyclohexane ring in these molecules, respectively. All the products were not reported previously in the literature.  相似文献   

20.
Three novel series of diarylpyrazole 10b-d and triarylpyrazole derivatives 11a-d &12a-d were synthesized through Vilsmier-Haack condition. The structures of prepared compounds were determined through IR, 1H NMR, 13C NMR, Mass spectral and elemental analysis. Docking of the synthesized compounds over COX-2 active site ensure their selectivity. Moreover, the target compounds were evaluated for both in vitro and in vivo inhibitory activity. All compounds were more selective for COX-2 isozyme than COX-1 isozyme and with excellent anti-inflammatory activity. Compounds 11b, 11d and 12b showed the highest anti-inflammatory activity (67.4%, 62.7%, 61.4% respectively), lower ulcerogenic liability (UI = 2.00, 2.75, 3.25 respectively) than indomethacin (UI = 14) and comparable to celecoxib (UI = 1.75) which were confirmed from the histopatholgical study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号