共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Z Sha X Shen A Wang Y Sun Z Gu Z Fang X 《Biochemical and biophysical research communications》2008,370(3):478-482
A novel nonviral gene transfer vector was developed by modifying nanostructured lipid carrier (NLC) with cetylated polyethylenimine (PEI). Polycation nanostructured lipid carrier (PNLC) was prepared using the emulsion-solvent evaporation method. Its in vitro gene transfer properties were evaluated in the human lung adenocarcinoma cell line SPC-A1 and Chinese Hamster Ovary (CHO) cells. Enhanced transfection efficiency of PNLC was observed after the addition of triolein to the PNLC formulation and the transfection efficiency of the optimized PNLC was comparable to that of Lipofectamine™2000. In the presence of 10% serum the transfection efficiency of the optimal PNLC was not significantly changed in either cell line, whereas that of Lipofectamine™2000 was greatly decreased in both. Thus, PNLC is an effective nonviral gene transfer vector and the gene delivery activity of PNLC was enhanced after triolein was included into the PNLC formulation. 相似文献
2.
Brushed polymers composed of a backbone of poly(hydroxyethyl methacrylate) (pHEMA) onto which poly(2-(dimethylamino)ethyl methacrylate)s (pDMAEMAs) was grafted via a hydrolyzable linker were synthesized and evaluated as nonviral gene delivery vectors. Both pDMAEMA and pHEMA polymers with controlled molecular weights and narrow distributions were synthesized by controlled atom transfer radical polymerization (ATRP). The azide initiator was used to ensure complete and monoazide functionalization of the pDMAEMA polymer chains. Click reaction between pHEMA with alkyne side groups and the azide end group in the pDMAEMA resulted in a high-molecular-weight polymer composed of low-molecular-weight constituents via an easily degradable carbonate ester linker. The length of the pDMAEMA grafts as well as the number of grafts of the brushed pHEMA-pDMAEMA can be easily varied. At physiological conditions (pH 7.4 and 37 degrees C), the brushed polymer degraded by hydrolysis of the carbonate ester with a half-life of 96 h. The molecular weights of the formed degradation products was very close to that of the starting pDMAEMA, which is likely below the renal excretion limit (<30 kDa). It was shown that the degradable brushed pHEMA-pDMAEMAs were able to condense plasmid DNA into positively charged nanosized particles. The resulting polyplexes were able to transfect cells efficiently in the presence of the endosomal membrane disrupting INF-7 peptide, and all these degradable polymers showed lower cellular toxicity compared to a high-molecular-weight pDMAEMA reference. On the other hand, the low-molecular-weight pDMAEMA used for the grafting to pHEMA was neither able to condense the structure of DNA nor able to transfect cells. This study demonstrates that grafting a low-molecular-weight cationic polymer via a hydrolyzable linker to a neutral hydrophilic polymer is an effective approach to modulate the transfection activity and toxicity profile of gene delivery polymers. 相似文献
3.
Non-viral vectors represent an important alternative in gene delivery. Among these vectors, cationic liposomes are widely studied, because of their ability to form stable complexes with DNA fragments (lipoplexes). In the present work, we report on the characterization by electron spin resonance (ESR) spectroscopy and zeta potential measurements of cationic liposomes and of their complexes with oligonucleotides. Liposomes were made with a zwitterionic lipid, DOPE, and a cationic lipid, either DOTAP or DC-Chol. Oligonucleotides were the 20-base single strand polyA, the 20-base single strand polyT, and the corresponding double strand dsAT. The zeta potential as a function of the oligonucleotide/lipid+ ratio gave an S-shaped titration curve. Well-defined surface potential changes took place upon charge compensation between the cationic lipid heads and the phosphate groups on the oligonucleotides. The inversion point depended on the specific system under study. The bilayer properties and the changes that occurred with the incorporation of DNA fragments were also monitored by ESR spectroscopy of appropriately tailored spin probes. For all the systems investigated, the ESR spectra showed that no major alteration took place after lipoplex formation and molecular packing remained substantially unchanged. Both zeta potential and ESR measurements were in favor of an external mode of packing of the lipoplexes. 相似文献
4.
Liposome complexation efficiency monitored by FRET: effect of charge ratio,helper lipid and plasmid size 总被引:4,自引:0,他引:4
Madeira C Loura LM Prieto M Fedorov A Aires-Barros MR 《European biophysics journal : EBJ》2007,36(6):609-620
Cationic lipid/DNA complexes (lipoplexes) are promising vehicles for DNA vaccines or gene therapy. In these systems, transfection
efficiency is highly related to lipoplex charge ratio, since lipoplexes with charge ratios (±) lower than electroneutrality
have most DNA uncovered by the liposomes, and thus are unprotected from enzyme degradation. However, a large excess of cationic
lipids is undesirable because of eventual cytotoxicity. The aim of this work was to determine the minimum charge ratio from
which all DNA molecules are complexed by the liposomes varying the lipid formulation and plasmid size, using a new FRET (fluorescence
resonance energy transfer) methodology. The similarity of FRET results, fluorescence intensity data and fluorescence decays
of several charge ratios above (±) ≥ 4 or 5 confirmed that once all DNA is covered by the liposomes, additional lipid molecules
do not affect the lipoplex multilamellar repeat distance. It was also verified by FRET that the presence of helper lipid reduces
the amount of cationic lipid required for DNA protection but does not affect the lipoplex multilamellar repeat distance. This
distance varies with the plasmid size when supercoiled plasmid is used, being apparently larger when longer plasmids are used.
Our study indicates that, despite the complexity of these systems not being totally described by our model, FRET is an informative
technique in lipoplex characterization. 相似文献
5.
6.
Analysis of the structure and composition of individual lipoplex particles by flow fluorometry 总被引:1,自引:0,他引:1
A flow fluorometric approach to study cationic lipoid-DNA complexes is presented. The approach uses standard flow cytometry equipment and common fluorescent dyes (BODIPY and ethidium homodimer-2) to detect both lipoid and DNA content in individual particles. In addition, a procedure that allows determination of whether or not liposomes remain intact is described. The procedure is based on monitoring the retention of a polar tracer that has been preloaded into its aqueous compartment. Sample preparation, instrument setup, data analysis, and methodological limitations are described. Applications of the procedure to cationic lipoid-DNA complexes are described, and illustrations are given for the determination of how the lipoid content, composition, and structure of individual lipoplexes in a population evolve over time, starting at about 1 min after DNA and vesicles are mixed. Analogous procedures can be applied to other heterogeneous particles and supramolecular structures. 相似文献
7.
Plant gene delivery is challenging due to the presence of plant cell walls. Conventional means such as Agrobacterium infection, biolistic particle bombardment, electroporation, or polyethylene glycol attachment are often characterized by high cost, labor extensiveness, and a significant perturbation to the growth of cells. We have succeeded in delivering GFP-encoding plasmid DNA to turfgrass cells using poly(amidoamine) dendrimers. Our new scheme utilizes the physiochemical properties as well as the nanosize of the poly(amidoamine) dendrimer for direct and noninvasive gene delivery. The GFP gene was expressed in the plant cells as observed by confocal fluorescence microscopy. The transfection efficiency may be further improved by optimizing the pH of the cell culture medium and the molar ratio of the dendrimer to DNA. The use of the current delivery system can be extended to virtually all plant species having successful regeneration systems in place. 相似文献
8.
In this work, incorporation of plasmid DNA, pre-complexed with PEI, into polyelectrolyte multilayers has been studied to further develop platforms for local gene delivery. Polyplex embedding in synthetic and naturally degradable architectures was efficient for transfection of human hepato-cellular carcinoma cells. 相似文献
9.
10.
11.
12.
Biophysical aspects of using liposomes as delivery vehicles 总被引:5,自引:0,他引:5
Ulrich AS 《Bioscience reports》2002,22(2):129-150
Liposomes are used as biocompatible carriers of drugs, peptides, proteins, plasmic DNA, antisense oligonucleotides or ribozymes, for pharmaceutical, cosmetic, and biochemical purposes. The enormous versatility in particle size and in the physical parameters of the lipids affords an attractive potential for constructing tailor-made vehicles for a wide range of applications. Some of the recent literature will be reviewed here and presented from a biophysical point of view, thus providing a background for the more specialized articles in this special issue on liposome technology. Different properties (size, colloidal behavior, phase transitions, and polymorphism) of diverse lipid formulations (liposomes, lipoplexes, cubic phases, emulsions, and solid lipid nanoparticles) for distinct applications (parenteral, transdermal, pulmonary, and oral administration) will be rationalized in terms of common structural, thermodynamic and kinetic parameters of the lipids. This general biophysical basis helps to understand pharmaceutically relevant aspects such as liposome stability during storage and towards serum, the biodistribution and specific targeting of cargo, and how to trigger drug release and membrane fusion. Methods for the preparation and characterization of liposomal formulations in vitro will be outlined, too. 相似文献
13.
Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector 总被引:6,自引:0,他引:6
Morishita N Nakagami H Morishita R Takeda S Mishima F Terazono B Nishijima S Kaneda Y Tanaka N 《Biochemical and biophysical research communications》2005,334(4):1121-1126
To enter the realm of human gene therapy, a novel drug delivery system is required for efficient delivery of small molecules with high safety for clinical usage. We have developed a unique vector "HVJ-E (hemagglutinating virus of Japan-envelope)" that can rapidly transfer plasmid DNA, oligonucleotide, and protein into cells by cell-fusion. In this study, we associated HVJ-E with magnetic nanoparticles, which can potentially enhance its transfection efficiency in the presence of a magnetic force. Magnetic nanoparticles, such as maghemite, with an average size of 29 nm, can be regulated by a magnetic force and basically consist of oxidized Fe which is commonly used as a supplement for the treatment of anemia. A mixture of magnetite particles with protamine sulfate, which gives a cationic surface charge on the maghemite particles, significantly enhanced the transfection efficiency in an in vitro cell culture system based on HVJ-E technology, resulting in a reduction in the required titer of HVJ. Addition of magnetic nanoparticles would enhance the association of HVJ-E with the cell membrane with a magnetic force. However, maghemite particles surface-coated with heparin, but not protamine sulfate, enhanced the transfection efficiency in the analysis of direct injection into the mouse liver in an in vivo model. The size and surface chemistry of magnetic particles could be tailored accordingly to meet specific demands of physical and biological characteristics. Overall, magnetic nanoparticles with different surface modifications can enhance HVJ-E-based gene transfer by modification of the size or charge, which could potentially help to overcome fundamental limitations to gene therapy in vivo. 相似文献
14.
In vitro gene delivery to HepG2 cells using galactosylated 6-amino-6-deoxychitosan as a DNA carrier 总被引:2,自引:0,他引:2
Satoh T Kakimoto S Kano H Nakatani M Shinkai S Nagasaki T 《Carbohydrate research》2007,342(11):1427-1433
A chitosan derivative, 6-amino-6-deoxy chitosan (6ACT), was galactosylated and was investigated as a gene carrier. A series of galactose-modified 6ACT (Gal-6ACT) with degrees of substitution (d.s.) ranging from 3% to 50% per pyranose were prepared by reductive alkylation with lactose. DNA retardation assays showed that the electrostatic interaction between Gal-6ACT and plasmid DNA was not changed by galactose modification up to 50% per pyranose of 6ACT. Gal-6ACT with a d.s. of 38% was bound to galactose-recognizing lectin, RCA120. A significant increase in transfection efficiency for HepG2 cells was observed at degree of substitutions ranging from 18% to 50% and at N/P values ranging from 1.5 to 2.5. Under optimum conditions, Gal-6ACT showed about 10 times higher efficiency than 6ACT. However, a slight uptake by the galactose receptors on hepatocytes was observed by flow cytometric analysis. Moreover, Gal-6ACT with a d.s. of 38% mediated efficient gene transfer into both A549 and HeLa cells lacking the galactose receptor. These results suggest that the enhancement of transfection efficiency of Gal-6ACT was not due to the increase of receptor-mediated cellular uptake. In addition, the enhanced gene transfer efficiency was not specific to the galactose modification because the efficiency of glucose-modified 6ACT for HepG2 cells was similar as that of Gal-6ACT. 相似文献
15.
16.
Zhang QF Yang WH Yi WJ Zhang J Ren J Luo TY Zhu W Yu XQ 《Bioorganic & medicinal chemistry letters》2011,21(23):7045-7049
A series of novel cationic lipids based on 1,4,7-triazacyclononane (TACN) with different hydrophobic chains were synthesized via the formation of a biodegradable ester bond. These lipids were found to have good buffering capacity at the pH range of 5.0-6.5, which is similar to that of the acidic endosomal compartments. The liposomes formed from these lipids and DOPE could condense DNA into nanoparticles with proper sizes. In vitro experiments showed moderate to good gene transfection efficiency of the formed lipoplexes. The structure-activity relationships of this type of lipids were discussed. 相似文献
17.
BACKGROUND: Achieving specificity of delivery represents a major problem limiting the clinical application of retroviral vectors for gene therapy, whilst lack of efficiency and longevity of gene expression limit non-viral techniques. Ultrasound and microbubble contrast agents can be used to effect plasmid DNA delivery. We therefore sought to evaluate the potential for ultrasound/microbubble-mediated retroviral gene delivery. METHODS: An envelope-deficient retroviral vector, inherently incapable of target cell entry, was combined with cationic microbubbles and added to target cells. The cells were exposed to pulsed 1 MHz ultrasound for 5 s and subsequently analysed for marker gene expression. The acoustic pressure profile of the ultrasound field, to which transduction efficiency was related, was determined using a needle hydrophone. RESULTS: Ultrasound-targeted gene delivery to a restricted area of cells was achieved using virus-loaded microbubbles. Gene delivery efficiency was up to 2% near the beam focus. Significant transduction was restricted to areas exposed to > or = 0.4 MPa peak-negative acoustic pressure, despite uniform application of the vector. An acoustic pressure-dependence was demonstrated that can be exploited for targeted retroviral transduction. The mechanism of entry likely involves membrane perturbation in the vicinity of oscillating microbubbles, facilitating fusion of the viral and cell membranes. CONCLUSIONS: We have established the basis of a novel retroviral vector technology incorporating favourable aspects of existing viral and non-viral gene delivery vectors. In particular, transduction can be controlled by means of ultrasound exposure. The technology is ideally suited to targeted delivery following systemic vector administration. 相似文献
18.
Berchel M Le Gall T Couthon-Gourvès H Haelters JP Montier T Midoux P Lehn P Jaffrès PA 《Biochimie》2012,94(1):33-41
Lipophophoramidates constitute a class of synthetic vectors which were especially designed for gene delivery. In this family of compounds, the phosphorus functional group links two lipid chains to a spacer ended by a polar headgroup. Such vectors, which can readily be obtained, offer an alternative to the numerous examples of glycerolipid-based vectors that have been more exhaustively studied. Since the pioneering work describing this series of synthetic vectors, several chemical modifications have been proposed with the aim of correlating the molecular structure with the gene transfection efficacy. It has indeed been observed that some modifications which may be considered as minor at first glance, actually have important consequences on both the transfection efficacy and cytotoxic side effects. We herein discuss the modification of the structure of lipophosphoramidates, in particular of their lipidic part and of the nature of the cationic polar head which may be constituted by a trimethylammonium, trimethylphosphonium or trimethylarsonium motif. We also report that, as well as the in vitro transfection efficacy which governs the selection of the most promising vectors for in vivo studies, other aspects related to the synthetic pathway must be also considered for the development of new synthetic vectors (such as modularity of the synthesis, scaling-up). 相似文献
19.
Nucleic acids-based next generation biopharmaceuticals (i.e., pDNA, oligonucleotides, short interfering RNA) are potential pioneering materials to cope with various incurable diseases. However, several biological barriers present a challenge for efficient gene delivery. On the other hand, developments in nanotechnology now offer numerous non-viral vectors that have been fabricated and found capable of transmitting the biopharmaceuticals into the cell and even into specific subcellular compartments like mitochondria. This overview illustrates cellular barriers and current status of non-viral gene vectors, i.e., lipoplexes, liposomes, polyplexes, and nanoparticles, to relocate therapeutic DNA-based nanomedicine into the target cell. Despite the awesome impact of physical methods (i.e., ultrasound, electroporation), chemical methods have been shown to accomplish high-level and safe transgene expression. Further comprehension of barriers and the mechanism of cellular uptake will facilitate development of nucleic acids-based nanotherapy for alleviation of various disorders. 相似文献
20.
《Bioorganic & medicinal chemistry letters》2014,24(7):1771-1775
Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000. 相似文献