首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rhinanthoid clade of the family Orobanchaceae comprises plants displaying a hemiparasitic or holoparasitic strategy of resource acquisition. Some of its species (mainly Rhinanthus spp.) are often used as models for studies of hemiparasite physiology. Although there is a well‐developed concept covering their physiological processes, most recent studies have neglected the existence of hydathode trichomes present on leaves of these hemiparasitic plants. As a first step for the proposed integration of these structures in the theory of physiological processes of the hemiparasites, we described the outer micromorphology and ultrastructure of the hydathode trichomes on leaves of hemiparasitic Rhinanthus alectorolophus and Odontites vernus with scanning and transmission electron microscopy (SEM and TEM, respectively). The TEM inspections of both types of trichome revealed typical ultrastructural features: labyrinthine cell wall, high content of cytoplasm in cells with numerous mitochondria and presence of plasmodesmata. All these features indicate high metabolic activity complying with their function as glandular trichomes actively secreting water. The active secretion of water by the hydathode trichomes (evidence for which is summarised here) also presents a possible mechanism explaining results of previous gas exchange measurements detecting high dark respiration and transpiration rates and a tight inter‐correlation between them in hemiparasitic Orobanchaceae. In addition, this process is hypothesised to have allowed multiple evolutionary transitions from facultative to obligate hemiparasitism and unique xylem‐feeding holoparasitism of Lathraea with a long‐lived underground stage featuring a rhizome covered by scales of leaf origin.  相似文献   

2.
Trichomes of 37 taxa of the genus Stachys and one species of Sideritis (S. montana) were examined using light and scanning electron microscopy. The indumentum shows considerable variability among different species, but is constant among different populations of one species, and therefore, affords valuable characters in delimitation of sections and species. The characters of taxonomic interest were presence of glandular and non-glandular trichomes, thickness of the cell walls, number of cells (unicellular or multi-cellular), presence of branched (dendroid) trichomes, presence of vermiform trichomes, orientation of trichomes in relation to the epidermal surface, curviness of trichomes, and presence of papillae on trichome surface. Two basic types of trichomes can be distinguished: glandular and non-glandular trichomes. The glandular trichomes can in turn be subdivided into subtypes: stalked, subsessile, or sessile. The stalks of the glandular trichomes can be uni- or multi-cellular. Simple unbranched and branched trichomes constitute two subtypes of non-glandular trichomes. Our data do not provide any support for separation of Sideritis from Stachys. The following evolutionary trends are suggested here for Stachys: vermiform trichomes with stellate base are primitive against vermiform trichomes with tuberculate base, long vermiform trichomes are primitive against the short simple trichomes, appressed trichomes are advanced against spreading ones, and loss of glandular trichomes is advanced against their presence. Overall, trichome micromorphology is more useful in separation of species within sections rather than characterizing large natural groups known as sections, except for few cases.  相似文献   

3.
Laminar hydathodes are known from only three dicot families. InUrticaceae they are associated with minor vein junctions in all five tribes, as surveyed from cleared leaves of 43 species in 30 genera. Only one species lacked hydathodes. Exclusively adaxial hydathodes were found in 28 genera. In tribeElatostemeae, laminar hydathodes inPilea andPellionia species are abaxial, adaxial, or on both surfaces. Guttation was observed in four species.Urtica dioica (adaxial) andPilea pumila (abaxial) were studied anatomically in detail. Hydathodes in the former have normal bundle structure but xylem gaps sometimes occur. In the latter, phloem is displaced in three previously undescribed ways: 1) ends abruptly near hydathode, 2) curves into connecting vein at adjacent junction, or 3) departs xylem, skirts hydathode independently, and rejoins adjacent xylem strand. Laminar hydathodes are a unifying character of theUrticaceae, and they also strengthen its close relationship to theMoraceae.  相似文献   

4.
The ultrastructure of the glandular trichomes and secretory ducts of Grindelia pulchella was studied. Plastids, mitochondria and endoplasmic reticulum are involved in the secretory process of both, trichomes and ducts. A special tissue with “transfer cells” is associated with the duct epithelial cells. The secretion is produced in the transfer cells and then is transferred to the duct epithelial cells where it accumulates in the vacuoles. The occurrence of cavities within the cell walls of the trichome cells and duct epithelial cells is described. The secretion is accumulated between the cell wall and the cuticle of these cells. When the cuticle is broken the secretion is released. We conclude that granulocrine secretion operates in this species.  相似文献   

5.
The fan-shaped leaves of the resurrection plant Myrothamnus flabellifolius Welw. fold during episodes of drought and consequent desiccation of the tissue. The leaf teeth of M. flabellifolius have several features characteristic of hydathodes. Tracheary elements from the three vein endings that converge in each leaf tooth subtend and extend into a cluster of cells significantly smaller than those of the adjacent mesophyll. The stomata overlying this putative epithem are larger than the other stomata on the leaf surface. Crystal violet is absorbed via these stomata in non-transpiring leaves, suggesting that they are water pores. Two to four such water pores occur per hydathode and are readily distinguished in desiccated leaves. Laminar hydathodes apparently also occur in the leaves of M. flabellifolius. Branched vein endings that terminate in short, wide tracheary elements subtend the outer edges of the abaxial leaf ridge, which otherwise lack stomata, and coincide with regions of crystal violet uptake. Guttation could not be induced in M. flabellifolius. However, desiccated leaves readily absorb liquid water through the leaf surface. The use of Calcafluor White to trace the pathway of apoplastic water movement suggests a role for both types of hydathode in foliar water uptake during rehydration while the accumulation of Sulphorhodamine G (indicating solute retrieval from the apoplast) in the epithem of transpiring plants suggests the hydathodes may be a pathway of water loss in the desiccating leaf.  相似文献   

6.
7.

Background and Aims

Parasitic plants obtain nutrients from their hosts through organs called haustoria. The hyaline body is a specialized parenchymatous tissue occupying the central parts of haustoria in many Orobanchaceae species. The structure and functions of hyaline bodies are poorly understood despite their apparent necessity for the proper functioning of haustoria. Reported here is a cell wall-focused immunohistochemical study of the hyaline bodies of three species from the ecologically important clade of rhinanthoid Orobanchaceae.

Methods

Haustoria collected from laboratory-grown and field-collected plants of Rhinanthus minor, Odontites vernus and Melampyrum pratense attached to various hosts were immunolabelled for cell wall matrix glycans and glycoproteins using specific monoclonal antibodies (mAbs).

Key Results

Hyaline body cell wall architecture differed from that of the surrounding parenchyma in all species investigated. Enrichment in arabinogalactan protein (AGP) epitopes labelled with mAbs LM2, JIM8, JIM13, JIM14 and CCRC-M7 was prominent and coincided with reduced labelling of de-esterified homogalacturonan with mAbs JIM5, LM18 and LM19. Furthermore, paramural bodies, intercellular deposits and globular ergastic bodies composed of pectins, xyloglucans, extensins and AGPs were common. In Rhinanthus they were particularly abundant in pairings with legume hosts. Hyaline body cells were not in direct contact with haustorial xylem, which was surrounded by a single layer of paratracheal parenchyma with thickened cell walls abutting the xylem.

Conclusions

The distinctive anatomy and cell wall architecture indicate hyaline body specialization. Altered proportions of AGPs and pectins may affect the mechanical properties of hyaline body cell walls. This and the association with a transfer-like type of paratracheal parenchyma suggest a role in nutrient translocation. Organelle-rich protoplasts and the presence of exceptionally profuse intra- and intercellular wall materials when attached to a nitrogen-fixing host suggest subsequent processing and transient storage of nutrients. AGPs might therefore be implicated in nutrient transfer and metabolism in haustoria.  相似文献   

8.

Background and Aims

Sisyrinchium (Iridaceae: Iridoideae: Sisyrinchieae) is one of the largest, most widespread and most taxonomically complex genera in Iridaceae, with all species except one native to the American continent. Phylogenetic relationships within the genus were investigated and the evolution of oil-producing structures related to specialized oil-bee pollination examined.

Methods

Phylogenetic analyses based on eight molecular markers obtained from 101 Sisyrinchium accessions representing 85 species were conducted in the first extensive phylogenetic analysis of the genus. Total evidence analyses confirmed the monophyly of the genus and retrieved nine major clades weakly connected to the subdivisions previously recognized. The resulting phylogenetic hypothesis was used to reconstruct biogeographical patterns, and to trace the evolutionary origin of glandular trichomes present in the flowers of several species.

Key Results and Conclusions

Glandular trichomes evolved three times independently in the genus. In two cases, these glandular trichomes are oil-secreting, suggesting that the corresponding flowers might be pollinated by oil-bees. Biogeographical patterns indicate expansions from Central America and the northern Andes to the subandean ranges between Chile and Argentina and to the extended area of the Paraná river basin. The distribution of oil-flower species across the phylogenetic trees suggests that oil-producing trichomes may have played a key role in the diversification of the genus, a hypothesis that requires future testing.  相似文献   

9.
Herein, we report cloning and analysis of promoters of GLABRA2 (AaGL2) homolog and a MIXTA-Like (AaMIXTA-Like1) gene from Artemisia annua. The upstream regulatory regions of AaGL2 and AaMIXTA-Like1 showed the presence of several crucial cis-acting elements. Arabidopsis and A. annua seedlings were transiently transfected with the promoter-GUS constructs using a robust agro-infiltration method. Both AaGL2 and AaMIXTA-Like1 promoters showed GUS expression preferentially in Arabidopsis single-celled trichomes and glandular as well as T-shaped trichomes of A. annua. Transgenic Arabidopsis harboring constructs in which AaGL2 or AaMIXTA-Like1 promoters would control GFP expression, showed fluorescence emanating specifically from trichome cells. Our study provides a fast and efficient method to study trichome-specific expression, and 2 promoters that have potential for targeted metabolic engineering in plants.  相似文献   

10.
The structural details of the guttating tips of 7-day-old barleyleaves were studied as a basis for a subsequent report on thephysiology of guttation. The walls of the vessels at the tipsof leaves bear many pits and are rather thin, appearing neithercutinized nor lignified. This could facilitate a direct passageof solutes out of the xylary system through the leaf apoplastand out to the leaf surface via hydathode openings. The latterare formed by modified stomatal guard cells, and there are nospecially differentiated epithem, epithelium or gland hair likestructures that could serve an active elimination of guttation.Xylem parenchyma cells and the peculiar mesophyll cells withdense cytoplasm, numerous mitochondria, an extended ER systemand a considerable formation of small vesicles in the leaf tipcould modify the content of the guttated fluid along the routeof transport. Hordeum vulgare L., barley, hydathodes, guttation  相似文献   

11.
Trichoderma species are usually considered soil organisms that colonize plant roots, sometimes forming a symbiotic relationship. Recent studies demonstrate that Trichoderma species are also capable of colonizing the above ground tissues of Theobroma cacao (cacao) in what has been characterized as an endophytic relationship. Trichoderma species can be re-isolated from surface sterilized cacao stem tissue, including the bark and xylem, the apical meristem, and to a lesser degree from leaves. SEM analysis of cacao stems colonized by strains of four Trichoderma species (Trichoderma ovalisporum-DIS 70a, Trichoderma hamatum-DIS 219b, Trichoderma koningiopsis-DIS 172ai, or Trichoderma harzianum-DIS 219f) showed a preference for surface colonization of glandular trichomes versus non-glandular trichomes. The Trichoderma strains colonized the glandular trichome tips and formed swellings resembling appresoria. Hyphae were observed emerging from the glandular trichomes on surface sterilized stems from cacao seedlings that had been inoculated with each of the four Trichoderma strains. Fungal hyphae were observed under the microscope emerging from the trichomes as soon as 6 h after their isolation from surface sterilized cacao seedling stems. Hyphae were also observed, in some cases, emerging from stalk cells opposite the trichome head. Repeated single trichome/hyphae isolations verified that the emerging hyphae were the Trichoderma strains with which the cacao seedlings had been inoculated. Strains of four Trichoderma species were able to enter glandular trichomes during the colonization of cacao stems where they survived surface sterilization and could be re-isolated. The penetration of cacao trichomes may provide the entry point for Trichoderma species into the cacao stem allowing systemic colonization of this tissue.  相似文献   

12.
Secretion is a fundamental process providing plants with the means for disposal of solutes, improvement of nutrient acquisition, and attraction of other organisms. Specific secretory organs, such as nectaries, hydathodes, and trichomes, use a combination of secretory and retrieval mechanisms, which are poorly understood at present. To study the mechanisms involved, an Arabidopsis thaliana activation tagged mutant, glutamine dumper1 (gdu1), was identified that accumulates salt crystals at the hydathodes. Chemical analysis demonstrated that, in contrast with the amino acid mixture normally present in guttation droplets, the crystals mainly contain Gln. GDU1 was cloned and found to encode a novel 17-kD protein containing a single putative transmembrane span. GDU1 is expressed in the vascular tissues and in hydathodes. Gln content is specifically increased in xylem sap and leaf apoplasm, whereas the content of several amino acids is increased in leaves and phloem sap. Selective secretion of Gln by the leaves may be explained by an enhanced release of this amino acid from cells. GDU1 study may help to shed light on the secretory mechanisms for amino acids in plants.  相似文献   

13.
利用光学显微镜、扫描电镜和透射电镜技术,观察了龙葵“四叶一心”期时叶片及茎表皮的腺毛的种类、分布,探究了不同类型腺毛的起源、生长、成熟、分泌、衰老等发育过程的细胞学特征;通过组织化学染色和荧光显微技术,观察了龙葵腺毛成分、分布,为龙葵的进一步开发利用提供参考。结果表明:(1)龙葵腺毛分为单细胞头腺毛和多细胞头腺毛两类,前者主要分布于茎表面和叶上下表皮,后者主要分布于茎表面的单细胞头腺毛之间、叶脉及叶边缘;(2)龙葵腺毛发育起始于表皮细胞突起,单细胞头腺毛行顶端生长,具1-4个柄细胞,四种类型;多细胞头腺毛可再分为一层、两层与三层多细胞头腺毛,另具三种特殊类型;(3)龙葵成熟腺毛具分泌能力,通过皮下空间的物质积累导致腺毛头细胞表面形成突起、包块、破口,最终释放分泌物;而头细胞与柄细胞随即皱缩、衰老。(4)超微结构显示,腺毛头细胞中内质网与高尔基体极为丰富,合成代谢及分泌活动活跃,产生大量包裹嗜锇物质的囊泡,囊泡与细胞壁融合,进而将嗜锇物质转移至细胞壁并积累,随后储存在角质层下的皮下空间直至分泌释放;(5)组织化学染色结果表明,腺毛含有萜类、生物碱、脂类、蛋白质、酚类和多糖。头细胞中主要含有萜类、生物碱、脂类、蛋白质、酚类和中性多糖;柄细胞中主要含有萜类、生物碱、脂类。  相似文献   

14.
15.
The main driving force behind water transport in plants is the air's low water potential. In the presence of high humidity, the transpiration process is halted and water transport is mainly sustained by the root pressure. The surplus of water following the removal of essential components (e.g. salts) is excreted by the plant via guttation through the hydathodes. When guttation occurs, the plant surface is wetted. These are the conditions that will allow epiphytic living, motile bacteria to move and to eventually enter the plant's interior via the hydathodes. The question arose as to whether the plant has developed a protection mechanism against motile bacteria in the vicinity of the hydathodes. Such a protection mechanism could use the well known pathogenesis-related (PR) proteins. Indeed, an analysis of the guttation fluid using one- and two-dimensional electrophoresis showed a clustering of approximately 200 proteins, primarily with isoelectric points in the acidic pH. Proteins identified using electrospray ionization mass spectroscopic analysis and western blot analysis belong mostly to the family of PR-proteins suggesting a role in plant protection against invaders. The protein profile of the guttation fluid was remarkably modified by treating plants with methyl jasmonic acid suggesting that the protein composition of the guttation fluid is controlled by internal and/or external stimuli.  相似文献   

16.
Many plants possess specialized structures that are involved in the production and secretion of specific low molecular weight compounds and proteins. These structures are almost always localized on plant surfaces. Among them are nectaries or glandular trichomes. The secreted compounds are often employed in interactions with the biotic environment, for example as attractants for pollinators or deterrents against herbivores.Glands that are unique in several aspects can be found in carnivorous plants. In so-called pitcher plants of the genus Nepenthes, bifunctional glands inside the pitfall-trap on the one hand secrete the digestive fluid, including all enzymes necessary for prey digestion, and on the other hand take-up the released nutrients. Thus, these glands represent an ideal, specialized tissue predestinated to study the underlying molecular, biochemical, and physiological mechanisms of protein secretion and nutrient uptake in plants. Moreover, generally the biosynthesis of secondary compounds produced by many plants equipped with glandular structures could be investigated directly in glands.In order to work on such specialized structures, they need to be isolated efficiently, fast, metabolically active, and without contamination with other tissues. Therefore, a mechanical micropreparation technique was developed and applied for studies on Nepenthes digestion fluid. Here, a protocol is presented that was used to successfully prepare single bifunctional glands from Nepenthes traps, based on a mechanized microsampling platform. The glands could be isolated and directly used further for gene expression analysis by PCR techniques after preparation of RNA.  相似文献   

17.
Glandular trichomes are the phytochemical factories of plants, and they secrete a wide range of commercially important natural products such as lipids, terpenes and flavonoids. Herein, we report that the Nicotiana tabacum LTP1 (NtLTP1) gene, which is specifically expressed in long glandular trichomes, plays a role in lipid secretion from trichome heads. NtLTP1 mRNA is abundantly transcribed in trichomes, but NtLTP3, NtLTP4 and NtLTP5 are not. In situ hybridization revealed that NtLTP1 mRNAs accumulate specifically in long trichomes and not in short trichomes or epidermal cells. X-gluc staining of leaves from a transgenic plant expressing the NtLTP1 promoter fused to a GUS gene revealed that NtLTP1 protein accumulated preferentially on the tops of long glandular trichomes. GFP fluorescence from transgenic tobacco plants expressing an NtLTP1-GFP fusion protein was localized at the periphery of cells and in the excreted liquid droplets from the glandular trichome heads. In vitro assays using a fluorescent 2-p-toluidinonaphthalene-6-sulfonate probe indicated that recombinant NtLTP1 had lipid-binding activity. The overexpression of NtLTP1 in transgenic tobacco plants resulted in the increased secretion of trichome exudates, including epicuticular wax. In transgenic NtLTP1-RNAi lines, liquid secretion from trichomes was strongly reduced, but epicuticular wax secretion was not altered. Moreover, transgenic tobacco plants overexpressing NtLTP1 showed increased protection against aphids. Taken together, these data suggest that NtLTP1 is abundantly expressed in long glandular trichomes, and may play a role in lipid secretion from long glandular trichomes.  相似文献   

18.
Guttating leaf teeth of Potentilla palustris plants from Wisconsin, USA, were cleared or processed for plastic sectioning or scanning electron microscopy. Anatomical features include: 1) long slender hydathode area occupying most of the tooth, 2) adaxial pad of small, flat epidermal cells with 50 or more sunken water pores about the size of ordinary abaxial stomates, 3) three converged bundles that extend distally, where their tracheary files are separated by intervening files of xylem parenchyma cells with sinuous walls, 4) adaxial mass of small, loosely arranged epithem cells above the xylem, 5) one slender phloem strand that extends only about a third of the way into the hydathode, and 6) bundle sheath extending distally only abaxially and along the flanks of the hydathode. Potentilla hydathodes differ significantly from non-guttating ones described earlier in Physocarpus (Rosaceae).  相似文献   

19.
Resource availability and the trichome defenses of tomato plants   总被引:10,自引:0,他引:10  
We conducted two experiments to determine how resource availability influenced allocation by tomato (Lycopersicon esculentum) to trichomes, and how different patterns of trichome allocation by plants grown in different resource environments might then influence the behavior of tobacco hornworm (Manduca sexta) caterpillars. In the first experiment we used high and low levels of light and water, and then, using scanning electron microscopy, determined trichome densities on the leaves and stems. We sampled leaves and stems at several places throughout the plant to determine whether there were within-plant differences in allocation to trichomes. The results of the first experiment showed that resource availability influenced allocation to trichome growth. Patterns in high and low-light supported both the growth-differentiation balance hypothesis (GDBH) and the carbon-nutrient balance hypothesis (CNBH). However, the GDBH was not supported by differences among water treatments. Contrary, to predictions of the GDBH, plants with intermediate growth did not have the highest trichome densities, and plants with similar growth differed in trichome density. Possible biological and artifactual explanations are discussed. The first experiment also showed that there was within-plant variation in allocation to trichomes, and that plant resource availability may influence within-plant variation in allocation to trichomes. In the second experiment, we grew plants in high and low-light, and then monitored the behavior of tobacco hornworms on the stems of these plants in the laboratory. This experiment demonstrated that the light environment that tomato plants were grown in influenced the resting behavior of caterpillars. Furthermore, it demonstrated that both glandular and non-glandular trichomes impeded caterpillars from searching for food. Overall, this study indicated that plant resource availability can influence allocation to trichome defenses, and that these differences may affect insect herbivores.  相似文献   

20.
Background The cost–benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants.Scope This review summarizes results from the classical interpretation of the cost–benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost–benefit model.Conclusions Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号