首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cathepsin E (CatE) and D (CatD) are the major aspartic proteinases in the endolysosomal pathway. They have similar specificity and therefore it is difficult to distinguish between them, as known substrates are not exclusively specific for one or the other. In this paper we present a substrate-based assay, which is highly relevant for immunological investigations because it detects both CatE and CatD in antigen-processing organelles. Therefore it could be used to study the involvement of these proteinases in protein degradation and the processing of invariant chain. An assay combining a new monospecific CatE antibody and the substrate, MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(Dnp)-D-Arg-NH2[where MOCAc is (7-methoxycoumarin-4-yl)acetyl and Dnp is dinitrophenyl], is presented. This substrate is digested by both proteinases and therefore can be used to detect total aspartic proteinase activity in biological samples. After depletion of CatE by immunoprecipitation, the remaining activity is due to CatD, and the decrease in activity can be assigned to CatE. The activity of CatE and CatD in cytosolic, endosomal and lysosomal fractions of B cells, dendritic cells and human keratinocytes was determined. The data clearly indicate that CatE activity is mainly located in endosomal compartments, and that of CatD in lysosomal compartments. Hence this assay can also be used to characterize subcellular fractions using CatE as an endosomal marker, whereas CatD is a well-known lysosomal marker. The highest total aspartic proteinase activity was detected in dendritic cells, and the lowest in B cells. The assay presented exhibits a lower detection limit than common antibody-based methods without lacking the specificity.  相似文献   

2.
Cathepsin D (CatD) is a member of the mammalian aspartic protease family and is involved in cellular protein degradation and in several pathological processes. A sensitive and specific assay for the determination of CatD activity in biological samples was developed. The peptide amide substrates Amca-EDKPILF downward arrowFRLGK(biotin)-CONH2 (I), Amca-EEKPIC(Acm)F downward arrowFRLGK(biotin)-CONH2 (II) and Amca-EEKPISF downward arrowFRLGK(biotin)-CONH2 (III) contain a CatD cleavage site (F downward arrowF) flanked by a N-terminal Amca-fluorophore (7-amino-4-methylcoumarin-3-acetic acid) and a C-terminal biotin moiety. Substrates II and III proved to be specific substrates containing only one cleavage site for CatD. After cleavage of the Phe-Phe bond by CatD all biotin conjugated peptides were removed with streptavidin-coated magnetic beads. The remaining fluorescent peptides in solution represent the amount of digested substrate. The versatility of this CatD digest and pull down assay was demonstrated by measuring the activity of CatD in different subcellular fractions of human EBV-transformed B cells and human monocytes. The described method based on the designed CatD substrates represents a valuable tool for routine assays.  相似文献   

3.
The protein pattern of healthy human eccrine sweat was investigated and 10 major proteins were detected from which apolipoprotein D, lipophilin B, and cathepsin D (CatD) were identified for the first time in human eccrine sweat. We focused our studies on the function of the aspartate protease CatD in sweat. In vitro digestion experiments using a specific fluorescent CatD substrate showed that CatD is enzymatically active in human sweat. To identify potential substrates of CatD in human eccrine sweat LL-37 and DCD-1L, two antimicrobial peptides present in sweat, were digested in vitro with purified CatD. LL-37 was not significantly digested by CatD, whereas DCD-1L was cleaved between Leu(44) and Asp(45) and between Leu(29) and Glu(30) almost completely. The DCD-1L-derived peptides generated in vitro by CatD were also found in vivo in human sweat as determined by surface-enhanced laser desorption/ionization (SELDI) mass spectrometry. Furthermore, besides the CatD-processed peptides we identified additionally DCD-1L-derived peptides that are generated upon cleavage with a 1,10-phenanthroline-sensitive carboxypeptidase and an endoprotease. Taken together, proteolytic processing generates 12 DCD-1L-derived peptides. To elucidate the functional significance of postsecretory processing the antimicrobial activity of three CatD-processed DCD-1L peptides was tested. Whereas two of these peptides showed no activity against Gram-positive and Gram-negative bacteria, one DCD-1L-derived peptide showed an even higher activity against Escherichia coli than DCD-1L. Functional analysis indicated that proteolytic processing of DCD-1L by CatD in human sweat modulates the innate immune defense of human skin.  相似文献   

4.
Cathepsin D (CatD) is a lysosomal aspartic proteinase and plays an important role in the degradation of proteins and in apoptotic processes induced by oxidative stress, cytokines, and aging. All of these stimuli are potent inducers of endothelial cell apoptosis. Therefore, we investigated the role of CatD in endothelial cell apoptosis and determined the underlying mechanisms. Incubation with 100-500 microm H2O2 for 12 h induced apoptosis in endothelial cells. To determine a role for CatD, we co-incubated endothelial cells with the CatD inhibitor pepstatin A. Pepstatin A as well as genetic knock down of CatD abolished H2O2-induced apoptosis. In contrast, overexpression of CatD wild type but not a catalytically inactive mutant of CatD (CatDD295N) induced apoptosis under basal conditions. To gain insights into the underlying mechanisms, we investigated the effect of CatD on reactive oxygen species (ROS) formation. Indeed, knocking down CatD expression reduced H2O2-induced ROS formation and apoptosis. The major redox regulator in endothelial cells is thioredoxin-1 (Trx), which plays a crucial role in apoptosis inhibition. Thus, we hypothesized that CatD may alter Trx protein levels and thereby promote formation of ROS and apoptosis. Incubation with 100 microm H2O2 for 6 h decreased Trx protein levels, whereas Trx mRNA was not altered. H2O2-induced Trx degradation was inhibited by pepstatin A and genetic knock down of CatD but not by other protease inhibitors. Incubation of unstimulated cell lysates with recombinant CatD significantly reduced Trx protein levels in vitro, which was completely blocked by pepstatin A pre-incubation. Overexpression of CatD reduced Trx protein in cells. Moreover, H2O2 incubation led to a translocation of Trx to the lysosomes prior to the induction of apoptosis. Taken together, CatD induces apoptosis via degradation of Trx protein, which is an essential anti-apoptotic and reactive oxygen species scavenging protein in endothelial cells.  相似文献   

5.
Colorectal carcinoma (CRC) is one of the most common causes of cancer-related mortality. Short-chain fatty acids secreted by dietary propionibacteria from the intestine, such as acetate, induce apoptosis in CRC cells and may therefore be relevant in CRC prevention and therapy. We previously reported that acetic acid-induced apoptosis in Saccharomyces cerevisiae cells involves partial vacuole permeabilization and release of Pep4p, the yeast cathepsin D (CatD), which has a protective role in this process. In cancer cells, lysosomes have emerged as key players in apoptosis through selective lysosomal membrane permeabilization (LMP) and release of cathepsins. However, the role of CatD in CRC survival is controversial and has not been assessed in response to acetate. We aimed to ascertain whether LMP and CatD are involved in acetate-induced apoptosis in CRC cells. We showed that acetate per se inhibits proliferation and induces apoptosis. More importantly, we uncovered that acetate triggers LMP and CatD release to the cytosol. Pepstatin A (a CatD inhibitor) but not E64d (a cathepsin B and L inhibitor) increased acetate-induced apoptosis of CRC cells, suggesting that CatD has a protective role in this process. Our data indicate that acetate induces LMP and subsequent release of CatD in CRC cells undergoing apoptosis, and suggest exploiting novel strategies using acetate as a prevention/therapeutic agent in CRC, through simultaneous treatment with CatD inhibitors.  相似文献   

6.
Our earlier studies showed that bleomycin-induced apoptosis of type II alveolar epithelial cells (AECs) requires the autocrine synthesis and proteolytic processing of angiotensinogen into ANG II and that inhibitors of ANG-converting enzyme (ACEis) block bleomycin-induced apoptosis (Li X, Zhang H, Soledad-Conrad V, Zhuang J, and Uhal BD. Am J Physiol Lung Cell Mol Physiol 284: L501-L507, 2003). Given the documented role of cathepsin D (CatD) in apoptosis of other cell types, we hypothesized that CatD might be the AEC enzyme responsible for the conversion of angiotensinogen into ANG I, the substrate for ACE. Primary cultures of rat type II AECs challenged with bleomycin in vitro showed upregulation and secretion of CatD enzymatic activity and immunoreactive protein but no increases in CatD mRNA. The aspartyl protease inhibitor pepstatin A, which completely blocked CatD enzymatic activity, inhibited bleomycin-induced nuclear fragmentation by 76% and reduced bleomycin-induced caspase-3 activation by 47%. Antisense oligonucleotides against CatD mRNA reduced CatD-immunoreactive protein and inhibited bleomycin-induced nuclear fragmentation by 48%. A purified fragment of angiotensinogen (F1-14) containing the CatD and ACE cleavage sites, when applied to unchallenged AEC in vitro, yielded mature ANG II peptide and induced apoptosis. The apoptosis induced by F1-14 was inhibited 96% by pepstatin A and 77% by neutralizing antibodies specific for CatD (both P < 0.001). These data indicate a critical role for CatD in bleomycin-induced apoptosis of cultured AEC and suggest that the role(s) of CatD in AEC apoptosis include the conversion of newly synthesized angiotensinogen to ANG II.  相似文献   

7.
Goldfarb NE  Lam MT  Bose AK  Patel AM  Duckworth AJ  Dunn BM 《Biochemistry》2005,44(48):15725-15733
Human cathepsin D (hCatD) is an aspartic peptidase with a low pH optimum. X-ray crystal structures have been solved for an active, low pH (pH 5.1) form (CatD(lo)) [Baldwin, E. T., Bhat, T. N., Gulnik, S., Hosur, M. V., Sowder, R. C., Cachau, R. E., Collins, J., Silva, A. M., and Erickson, J. W. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 6796-6800] and an inactive, high pH (pH 7.5) form (CatD(hi)) [Lee, A. Y., Gulnik, S. V., and Erickson, J. W. (1998) Nat. Struct. Biol. 5, 866-871]. It has been suggested that ionizable switches involving the carboxylate side chains of E5, E180, and D187 may mediate the reversible interconversion between CatD(hi) and CatD(lo) and that Y10 stabilizes CatD(hi) [Lee, A. Y., Gulnik, S. V., and Erickson, J. W. (1998) Nat. Struct. Biol. 5, 866-871]. To test these hypotheses, we generated single point mutants in "short" recombinant human pseudocathepsin D (srCatD), a model kinetically similar to hCatD [Beyer, B. M., and Dunn, B. M. (1996) J. Biol. Chem. 271, 15590-15596]. E180Q, Y10F, and D187N exhibit significantly higher kcat/Km values (2-, 3-, and 6-fold, respectively) at pH 3.7 and 4.75 compared to srCatD, indicating that these residues are important in stabilizing the CatD(hi). E5Q exhibits a 2-fold lower kcat/Km compared to srCatD at both pH values, indicating the importance of E5 in stabilizing the CatD(lo). Accordingly, full time-course "pH-jump" (pH 5.5-4.75) studies of substrate hydrolysis indicate that E180Q, D187N, and Y10F have shorter kinetic lag phases that represent the change from CatD(hi) to CatD(lo) compared to srCatD and E5Q. Intrinsic tryptophan fluorescence reveals that the variants have a native-like structure over the pH range of our assays. The results indicate that E180 and D187 participate as an electrostatic switch that initiates the conformational change of CatD(lo) to CatD(hi) and Y10 stabilizes CatD(hi) by hydrogen bonding to the catalytic Asp 33. E5 appears to play a less significant role as an ionic switch that stabilizes CatD(lo).  相似文献   

8.
The mammalian DNA methyltransferase Dnmt1 is responsible for the maintenance of the pattern of DNA methylation in vivo. It is a large multidomain enzyme comprising 1620 amino acid residues. We have purified and characterized individual domains of Dnmt1 (NLS-containing domain, NlsD, amino acid residues: 1-343; replication foci-directing domain, 350-609; Zn-binding domain (ZnD), 613-748; polybromo domain, 746-1110; and the catalytic domain (CatD), 1124-1620). CatD, ZnD and NlsD bind to DNA, demonstrating the existence of three independent DNA-binding sites in Dnmt1. CatD shows a preference for binding to hemimethylated CpG-sites; ZnD prefers methylated CpGs; and NlsD specifically binds to CpG-sites, but does not discriminate between unmethylated and methylated DNA. These results are not compatible with the suggestion that the target recognition domain of Dnmt1 resides in the N terminus of the enzyme. We show by protein-protein interaction assays that ZnD and CatD interact with each other. The isolated catalytic domain does not methylate DNA, neither alone nor in combination with other domains. Full-length Dnmt1 was purified from baculovirus-infected insect cells. Under the experimental conditions, Dnmt1 has a strong (50-fold) preference for hemimethylated DNA. Dnmt1 is stimulated to methylate unmodified CpG sites by the addition of fully methylated DNA. This effect is dependent on Zn, suggesting that binding of methylated DNA to ZnD triggers the allosteric activation of the catalytic center of Dnmt1. The allosteric activation model can explain kinetic data obtained by others. It suggests that Dnmt1 might be responsible for spreading of methylation, a process that is observed during aging and carcenogenesis but may be important for de novo methylation of DNA.  相似文献   

9.
Human herpesvirus 8 (HHV-8) interleukin-6 (vIL-6) promotes cell proliferation and survival and is proangiogenic, implicating it as a contributor to virus-associated Kaposi''s sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman''s disease. Although predominantly lytically expressed, vIL-6 is also produced at low, functional levels during latency in PEL cells. Unlike other IL-6 cytokines, vIL-6 is secreted very inefficiently and localizes in the endoplasmic reticulum (ER). ER-localized vIL-6 supports PEL cell proliferation and survival, mediated in part through its interaction with the largely uncharacterized ER-resident protein vitamin K epoxide reductase complex subunit 1 variant 2 (VKORC1v2). Here, we report that the ER-transiting and functionally mitogenic secreted proenzyme (pCatD) form of cathepsin D (mature CatD), a proapoptotic lysosomal aspartate protease, is an interaction partner of VKORC1v2 and that vIL-6 promotes this interaction. Depletion of vIL-6 in PEL cells increased levels of the catalytically active, proteolytically cleaved form of CatD, corresponding with decreased PEL cell viability. Ectopic expression of CatD in PEL cells induced apoptosis, suggesting that CatD suppression by vIL-6 is biologically significant. In the context of high-density culture or reactivation of HHV-8 lytic replication in PEL cells, CatD depletion substantially reduced stress-induced apoptosis and increased virus production. In contrast, CatD overexpression, vIL-6 depletion, and peptide-mediated disruption of vIL-6–VKORC1v2 interaction inhibited replication and cell survival. Combined, our data identify pCatD as an interaction partner of VKORC1v2, demonstrate a role of vIL-6 in CatD suppression via VKORC1v2 in PEL cells, and identify a biologically significant mechanism of vIL-6 prosurvival and proreplication activities via VKORC1v2.  相似文献   

10.
11.
The lysosomal endoprotease cathepsin D (CatD) is an essential player in general protein turnover and specific peptide processing. CatD-deficiency is associated with neurodegenerative diseases, whereas elevated CatD levels correlate with tumor malignancy and cancer cell survival. Here, we show that the CatD ortholog of the budding yeast Saccharomyces cerevisiae (Pep4p) harbors a dual cytoprotective function, composed of an anti-apoptotic part, conferred by its proteolytic capacity, and an anti-necrotic part, which resides in the protein''s proteolytically inactive propeptide. Thus, deletion of PEP4 resulted in both apoptotic and necrotic cell death during chronological aging. Conversely, prolonged overexpression of Pep4p extended chronological lifespan specifically through the protein''s anti-necrotic function. This function, which triggered histone hypoacetylation, was dependent on polyamine biosynthesis and was exerted via enhanced intracellular levels of putrescine, spermidine and its precursor S-adenosyl-methionine. Altogether, these data discriminate two pro-survival functions of yeast CatD and provide first insight into the physiological regulation of programmed necrosis in yeast.  相似文献   

12.
The aim of this work was to evaluate the cytosolic contents of hyaluronic acid (HA) and cathepsin D (CatD) in gastric carcinomas and their possible relationships with the clinicopathological parameters of the tumors. Our study demonstrated a wide variability in the cytosolic levels of HA (mean +/- SEM: 3748 +/- 411 ng/mg protein) and cathepsin D (52 +/- 4 pmol/mg protein) in the tumors of 78 gastric cancer patients. In addition, the tumoral contents of HA and CatD were significantly higher (p<0.005) in diffuse type (HA: 6027 +/- 1099 ng/mg protein; CatD: 75 +/- 13 pmol/mg protein) than in intestinal type (HA: 2735 +/- 242 ng/mg protein; CatD: 42 +/- 3 pmol/mg protein) carcinomas. These data suggest that both markers may contribute to the biological characterization of gastric carcinomas.  相似文献   

13.
In this study we examined the ability of interferon-gamma (IFN-gamma) to regulate mammary epithelial cell growth and gene expression, with particular emphasis on two genes: Maspin (a member of serine protease inhibitor superfamily), and the lysosomal aspartyl endopeptidase cathepsin D (CatD). The protein products of these genes are critically involved in regulation of multitude of biological functions in different stages of mammary tissue development and remodeling. In addition, the expression of Maspin is down-regulated in primary breast cancer and is lost in metastatic disease, while CatD is excessively produced and aberrantly secreted by breast cancer cells. We report that IFN-gamma receptors are expressed in mammary epithelial cells, and receptor engagement by IFN-gamma transduces the IFN-gamma signal via Stat-1 resulting in decreased vacuolar pH. This change in vacuolar pH alters CatD protein processing and secretion concurrent with increased Maspin secretion. In addition, IFN-gamma exerts a suppressive effect on cell growth and proliferation, and induces morphological changes in mammary epithelial cells. Our studies also reveal that breast cancer cells, which are devoid of Maspin, are refractory to IFN-gamma with respect to changes in vacuolar pH and CatD. However, Maspin transfection of breast cancer cells partially sensitizes the cells to IFN-gamma's effect, thus providing new therapeutic implications.  相似文献   

14.
Cathepsin D stimulates DNA synthesis and mitosis in mouse liver in vivo   总被引:1,自引:0,他引:1  
Effects of a single intraperitoneal injection of cathepsin D (CatD) on DNA synthesis and mitosis in the mouse liver and kidney were investigated. Twenty micrograms of catD induced a significant stimulation of DNA synthesis in the liver, but not in the kidney, in a dose-dependent fashion and with a peak activity at 38 h after the injection. CatD also stimulated liver mitosis, with a peak value at 44 h after the injection.  相似文献   

15.
A cDNA of putative chitinase from Euglena gracilis, designated EgChiA, encoded 960 amino acid residues, which is arranged from N-terminus in the order of signal peptide, glycoside hydrolase family 18 (GH18) domain, carbohydrate binding module family 18 (CBM18) domain, GH18 domain, CBM18 domain, and transmembrane helix. It is likely that EgChiA is anchored on the cell surface. The recombinant second GH18 domain of EgChiA, designated as CatD2, displayed optimal catalytic activity at pH 3.0 and 50 °C. The lower the polymerization degree of the chitin oligosaccharides [(GlcNAc)4–6] used as the substrates, the higher was the rate of degradation by CatD2. CatD2 degraded chitin nanofibers as an insoluble substrate, and it produced only (GlcNAc)2 and GlcNAc. Therefore, we speculated that EgChiA localizes to the cell surface of E. gracilis and is involved in degradation of chitin polymers into (GlcNAc)2 or GlcNAc, which are easily taken up by the cells.  相似文献   

16.
We have previously shown that the yeast Cathepsin D (CatD) Pep4p translocates from the vacuole to the cytosol during acetic acid-induced apoptosis and is required for efficient mitochondrial degradation, though its specific role in this process is still elusive. Here, we show that the protective role of Pep4p in acetic acid-induced apoptosis depends on its catalytic activity and is independent of the yeast voltage-dependent anion channel Por1p (which has no role on mitochondrial degradation) but dependent on AAC proteins, the yeast adenine nucleotide translocator. Our results demonstrate a differential interplay between yeast vacuolar CatD and mitochondrial proteins involved in apoptosis regulation.  相似文献   

17.
The post-lactational regression of mammary gland is a complex multi-step process designed to conserve the biological function of the gland for next pregnancy. This developmental stage is a biological intrigue with great relevance to breast cancer research, and thus has been the subject of intensive scrutiny. Multipronged studies (microarray, proteomics profiling, animal knock-out models) have provided a repertoire of genes critical to involution. However, the caveat of these approaches remains in their failure to reveal post-translational modification(s), an emerging and critical aspect of gene regulation in developmental processes and mammary gland remodeling. The massive surge in the lysosomal enzymes concurrent with the onset of involution has been known for decades, and considered essential for “clearance” purposes. However, functional significance of these enzymes in diverse biological processes distinct from their proteolytic activity is just emerging. Studies from our laboratory had indicated specific post-translational modifications of the aspartyl endopeptidase Cathepsin D (CatD) at distinct stages mammary gland development. This study addresses the biological significance of these modifications in the involution process, and reveals that post-translational modifications drive CatD into the nucleus to cleave Histone 3. The cleavage of Histone 3 has been associated with cellular differentiation and could be critical instigator of involution process. From functional perspective, deregulated expression and increased secretion of CatD are associated with aggressive and metastatic phenotype of breast cancer. Thus unraveling CatD’s physiological functions in mammary gland development will bridge the present gap in understanding its pro-tumorigenic/metastatic functions, and assist in the generation of tailored therapeutic approaches.  相似文献   

18.
Chitinase J from alkaliphilic Bacillus sp. J813 comprises a glycoside hydrolase (GH) family 18 catalytic domain (CatD), a fibronectin type III like domain, and a carbohydrate-binding module (CBM) family 5 chitin-binding domain (ChBD). It has been suggested that the ChBD binds to insoluble chitin and enhances its degradation by the CatD. To investigate the roles of two aromatic residues (Trp541 and Trp542), which are exposed on the surface of the ChBD, mutational analysis was performed. Single and double mutations of the two aromatic residues decreased binding and hydrolyzing abilities toward insoluble chitin. This result suggests that the ChBD binds to chitin by hydrophobic interactions via two surface-exposed aromatic residues. However, the double mutant, which has no such aromatic residue, bound to chitin at pH 5.2, probably by electrostatic interactions. Moreover, the ChBD bound to insoluble chitosan by electrostatic interactions.  相似文献   

19.
Chitinase J from alkaliphilic Bacillus sp. J813 comprises a glycoside hydrolase (GH) family 18 catalytic domain (CatD), a fibronectin type III like domain, and a carbohydrate-binding module (CBM) family 5 chitin-binding domain (ChBD). It has been suggested that the ChBD binds to insoluble chitin and enhances its degradation by the CatD. To investigate the roles of two aromatic residues (Trp541 and Trp542), which are exposed on the surface of the ChBD, mutational analysis was performed. Single and double mutations of the two aromatic residues decreased binding and hydrolyzing abilities toward insoluble chitin. This result suggests that the ChBD binds to chitin by hydrophobic interactions via two surface-exposed aromatic residues. However, the double mutant, which has no such aromatic residue, bound to chitin at pH 5.2, probably by electrostatic interactions. Moreover, the ChBD bound to insoluble chitosan by electrostatic interactions.  相似文献   

20.
Chitinase C (ChiC) is the first bacterial family 19 chitinase discovered in Streptomyces griseus HUT6037. While it shares significant similarity with the plant family 19 chitinases in the catalytic domain, its N-terminal chitin-binding domain (ChBD(ChiC)) differs from those of the plant enzymes. ChBD(ChiC) and the catalytic domain (CatD(ChiC)), as well as intact ChiC, were separately produced in E. coli and purified to homogeneity. Binding experiments and isothermal titration calorimetry assays demonstrated that ChBD(ChiC) binds to insoluble chitin, soluble chitin, cellulose, and N-acetylchitohexaose (roughly in that order). A deletion of ChBD(ChiC) resulted in moderate (about 50%) reduction of the hydrolyzing activity toward insoluble chitin substrates, but most (about 90%) of the antifungal activity against Trichoderma reesei was abolished by this deletion. Thus, this domain appears to contribute more importantly to antifungal properties than to catalytic activities. ChBD(ChiC) itself did not have antifungal activity or a synergistic effect on the antifungal activity of CatD(ChiC) in trans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号