首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein kinase Akt is activated by growth factors and promotes cell survival and cell cycle progression. Here, we demonstrate that Akt phosphorylates the cell cycle inhibitory protein p21(Cip1) at Thr 145 in vitro and in intact cells as shown by in vitro kinase assays, site-directed mutagenesis, and phospho-peptide analysis. Akt-dependent phosphorylation of p21(Cip1) at Thr 145 prevents the complex formation of p21(Cip1) with PCNA, which inhibits DNA replication. In addition, phosphorylation of p21(Cip1) at Thr 145 decreases the binding of the cyclin-dependent kinases Cdk2 and Cdk4 to p21(Cip1) and attenuates the Cdk2 inhibitory activity of p21(Cip1). Immunohistochemistry and biochemical fractionation reveal that the decrease of PCNA binding and regulation of Cdk activity by p21(Cip1) phosphorylation is not caused by altered intracellular localization of p21(Cip1). As a functional consequence, phospho-mimetic mutagenesis of Thr 145 reverses the cell cycle-inhibitory properties of p21(Cip1), whereas the nonphosphorylatable p21(Cip1) T145A construct arrests cells in G(0) phase. These data suggest that the modulation of p21(Cip1) cell cycle functions by Akt-mediated phosphorylation regulates endothelial cell proliferation in response to stimuli that activate Akt.  相似文献   

2.
3.
4.
A growing amount of evidence indicates that miRNAs are important regulators of multiple cellular processes and, when expressed aberrantly in different types of cancer such as hepatocellular carcinoma (HCC), play significant roles in tumorigenesis and progression. Aberrant expression of miR-199a-5p (also called miR-199a) was found to contribute to carcinogenesis in different types of cancer, including HCC. However, the precise molecular mechanism is not yet fully understood. The present study showed that miR-199a is frequently down-regulated in HCC tissues and cells. Importantly, lower expression of miR-199a was significantly correlated with the malignant potential and poor prognosis of HCC, and restoration of miR-199a in HCC cells led to inhibition of the cell proliferation and cell cycle in vitro and in vivo. Furthermore, Frizzled type 7 receptor (FZD7), the most important Wnt receptor involved in cancer development and progression, was identified as a functional target of miR-199a. In addition, these findings were further strengthened by results showing that expression of FZD7 was inversely correlated with miR-199a in both HCC tissues and cells and that over-expression of miR-199a could significantly down-regulate the expression of genes downstream of FZD7, including β-catenin, Jun, Cyclin D1 and Myc. In conclusion, these findings not only help us to better elucidate the molecular mechanisms of hepatocarcinogenesis from a fresh perspective but also provide a new theoretical basis to further investigate miR-199a as a potential biomarker and a promising approach for HCC treatment.  相似文献   

5.
6.
The molecular mechanisms mediating death receptor-induced caspase-independent necrotic cell death are still largely unknown. We have previously reported that NIH3T3 cells are sensitized by caspase inhibition to death receptor-induced cytotoxicity leading to a necrosis-like cell death. In addition, we have identified an important role of cell cycle progression for this sensitization effect. Here, we report that tumor necrosis factor-induced necrotic death is preceded by an upregulation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1). Increased expression of p21(WAF1/Cip1) occurs prior to cell death in the nucleus, where it binds to a cyclin-dependent kinase indicating its functionality. The use of specific pharmacological inhibitors revealed a partial involvement of p38 mitogen-activated protein kinase in the upregulation of p21(WAF1/Cip1). Inhibition of p21(WAF1/Cip1) upregulation prevents a previously observed delay of the cells in the G2/M phase of the cell cycle thereby augmenting, not inhibiting cell death.  相似文献   

7.
Adkins JN  Lumb KJ 《Biochemistry》2000,39(45):13925-13930
Progression through the eukaryotic cell cycle is regulated by phosphorylation, which is catalyzed by cyclin-dependent kinases. Cyclin-dependent kinases are regulated through several mechanisms, including negative regulation by p21 (variously called CAP20, Cip1, Sdi1, and WAF1). It has been proposed that multiple p21 molecules are required to inhibit cyclin-dependent kinases, such that p21 acts as a sensitive buffer of cyclin-dependent kinase activity or as an assembly factor for the complexes formed by the cyclins and cyclin-dependent kinases. Using purified, full-length proteins of known concentration (determined by absorbance) and cyclin A-Cdk2 of known activity (calibrated with staurosporine), we find that a 1:1 molar ratio of p21 to cyclin A-Cdk2 is able to inhibit Cdk2 activity both in the binary cyclin A-Cdk2 complex and in the presence of proliferating cell nuclear antigen (PCNA). Our results indicate that the mechanism of p21 inhibition of cyclin A-Cdk2 does not involve multiple molecules of bound p21.  相似文献   

8.
Pyk2 is a cytoplasmic tyrosine kinase related to focal adhesion kinase (FAK). Compensatory Pyk2 expression occurs upon FAK loss in mice. However, the impact of Pyk2 up-regulation remains unclear. Previous studies showed that nuclear-localized FAK promotes cell proliferation and survival through FAK FERM domain-enhanced p53 tumor suppressor degradation (Lim, S. T., Chen, X. L., Lim, Y., Hanson, D. A., Vo, T. T., Howerton, K., Larocque, N., Fisher, S. J., Schlaepfer, D. D., and Ilic, D. (2008) Mol. Cell 29, 9–22). Here, we show that FAK knockdown triggered p53 activation and G1 cell cycle arrest in human umbilical vein endothelial cells after 4 days. However, by 7 days elevated Pyk2 expression occurred with a reduction in p53 levels and the release of the G1 block under conditions of continued FAK knockdown. To determine whether Pyk2 regulates p53, experiments were performed in FAK−/−p21−/− mouse embryo fibroblasts expressing endogenous Pyk2 and in ID8 ovarian carcinoma cells expressing both Pyk2 and FAK. In both cell lines, Pyk2 knockdown increased p53 levels and inhibited cell proliferation associated with G1 cell cycle arrest. Pyk2 FERM domain re-expression was sufficient to reduce p53 levels and promote increased BrdUrd incorporation. Pyk2 FERM promoted Mdm2-dependent p53 ubiquitination. Pyk2 FERM effects on p53 were blocked by proteasomal inhibition or mutational-inactivation of Pyk2 FERM nuclear localization. Staurosporine stress of ID8 cells promoted endogenous Pyk2 nuclear accumulation and enhanced Pyk2 binding to p53. Pyk2 knockdown potentiated ID8 cell death upon staurosporine addition. Moreover, Pyk2 FERM expression in human fibroblasts upon FAK knockdown prevented cisplatin-mediated apoptosis. Our studies demonstrate that nuclear Pyk2 functions to limit p53 levels, thus facilitating cell growth and survival in a kinase-independent manner.  相似文献   

9.
10.
11.
Wang W  Nacusi L  Sheaff RJ  Liu X 《Biochemistry》2005,44(44):14553-14564
Multiple proteolytic pathways are involved in the degradation of the cyclin-dependent kinase inhibitor p21(Cip1/WAF1). Timed destruction of p21(Cip1/WAF1) plays a critical role in cell-cycle progression and cellular response to DNA damage. The SCF(Skp2) complex (consisting of Rbx1, Cul1, Skp1, and Skp2) is one of the E3 ubiquitin ligases involved in ubiquitination of p21(Cip1/WAF1). Little is known about how SCF(Skp2) recruits its substrates and selects particular acceptor lysine residues for ubiquitination. In this study, we investigated the requirements for SCF(Skp2) recognition of p21(Cip1/WAF1) and lysine residues that are ubiquitinated in vitro and inside cells. We demonstrate that ubiquitination of p21(Cip1/WAF1) requires a functional interaction between p21(Cip1/WAF1) and the cyclin E-Cdk2 complex. Mutation of both the cyclin E recruitment motif (RXL) and the Cdk2-binding motif (FNF) at the N terminus of p21(Cip1/WAF1) abolishes its ubiquitination by SCF(Skp2), while mutation of either motif alone has minimal effects, suggesting either contact is sufficient for substrate recruitment. Thus, SCF(Skp2) appears to recognize a trimeric complex consisting of cyclin E-Cdk2-p21(Cip1/WAF1). Furthermore, we show that p21(Cip1/WAF1) can be ubiquitinated at four distinct lysine residues located in the carboxyl-terminal region but not two other lysine residues in the N-terminal region. Any one of these four lysine residues can be targeted for ubiquitination in the absence of the others in vitro, and three of these four lysine residues are also ubiquitinated in vivo, suggesting that there is limited specificity in the selection of ubiquitination sites. Interestingly, mutation of the carboxyl-terminal proline to lysine enables ubiquitin conjugation at the carboxyl terminus of the substrate both in vitro and in vivo. Thus, our results highlight a unique property of the ubiquitination enzymatic reaction in that substrate ubiquitination site selection can be remarkably diverse and occur in distinct spatial areas.  相似文献   

12.
p21(Cip1/WAF1) (p21), a p53-inducible protein, is a critical regulator of cell cycle and cell survival. p21 binds to and inhibits both the DNA synthesis regulator proliferating cell nuclear antigen and cyclin A/E-CDK2 complexes. Recently, p21 has also been shown to be a positive regulator of cell cycle progression as p21 is necessary for the assembly and activation of cyclin D1-CDK4/6 complexes. Furthermore, elevated p21 protein levels have been observed in various aggressive tumors as well as linked to chemoresistance. Here we demonstrate that p21 is directly phosphorylated by AKT/PKB, a survival kinase that is hyperactivated in many late stage tumors. Two sites (Thr(145) and Ser(146)) in the carboxyl terminus of p21 are phosphorylated by AKT/PKB in vitro and in vivo. Phosphorylation of Thr(145) inhibits PCNA binding, whereas phosphorylation of Ser(146) significantly increases p21 protein stability. Glioblastoma cell lines with activated AKT/PKB show enhanced p21 stability, and they are more resistant to taxol-mediated toxicity. Finally, AKT/PKB controls the assembly of cyclin D1-CDK4 complexes through modulation of p21 and cyclin D1 levels. These data imply that enhanced levels of p21 in tumors are due, in part, to phosphorylation by activated AKT/PKB. Furthermore, they suggest that one mechanism of AKT/PKB regulation of tumor cell survival and/or proliferation is to stabilize p21 protein.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Amplification or overexpression of HER-2/neu in cancer cells confers resistance to apoptosis and promotes cell growth. The cellular localization of p21Cip1/WAF1 has been proposed to be critical either in promoting cell survival or in inhibiting cell growth. Here we show that HER-2/neu-mediated cell growth requires the activation of Akt, which associates with p21Cip1/WAF1 and phosphorylates it at threonine 145, resulting in cytoplasmic localization of p21Cip1/WAF1. Furthermore, blocking the Akt pathway with a dominant-negative Akt mutant restores the nuclear localization and cell-growth-inhibiting activity of p21Cip1/WAF1. Our results indicate that HER-2/neu induces cytoplasmic localization of p21Cip1/WAF1 through activation of Akt to promote cell growth, which may have implications for the oncogenic activity of HER-2/neu and Akt.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号