首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new water-soluble chlorin derivatives 3, 5 and 8 for potential use as photosensitizers in photodynamic therapy (PDT) for cancer were synthesized from photoprotoporphyrin IX dimethyl ester (1). The in vivo biodistribution and clearance of chlorin derivatives 3, 5 and 8 were investigated in tumor-bearing mice. Iminodiacetic acid derivative 8 showed the greatest tumor-selective accumulation among the new chlorin derivatives with maximum accumulation in tumor tissue at 3 h after intravenous injection and rapid clearance from normal tissues within 24 h after injection. The in vivo therapeutic efficacy of PDT using 8 was evaluated by measuring tumor growth rates in tumor-bearing mice with 660 nm light-emitting diode irradiation at 3 h after injection of 8. Tumor growth was significantly inhibited by PDT using 8. These results indicate that iminodiacetic acid derivative 8 is useful as a new photosensitizer to overcome the disadvantages of photosensitizers that are currently in clinical use.  相似文献   

2.
Photodynamic therapy (PDT) represents a promising method for treatment of cancerous tumors. The chemical and physical properties of used photosensitizer play key roles in the treatment efficacy. In this study, a novel photosensitizer, Chlorin-H [-13,15-N-(cyclohexyl)cycloimide] which displayed a characteristic long wavelength absorption peak at 698 nm was synthesized. Following flash photolysis with 355 nm laser, Chlorin-H is potent to react with O2 and then produce 1O2. This finding indicates that Chlorin-H takes its effects through type II mechanism in PDT. Generally, Chlorin-H is localized in mitochondria and nucleus of cell. After light irradiation with 698 nm laser, it can kill many types of cell, inhibit cell proliferation and colony formation, suppress cancer cell invasiveness and trigger apoptosis via the mitochondrial pathway in A549 cells in vitro. In addition, Chlorin-H–PDT can destroy A549 tumor in nude mice and a necrotic scab was formed eventually. The expression levels of many genes which regulated cell growth and apoptosis were determined by RT-PCR following Chlorin-H–PDT. The results showed that it either increased or decrease. Among which, the expression level of TNFSF13, a member of tumor necrosis factor superfamily, increased significantly. Silencing of TNFSF13 caused by RNA interference decreased the susceptibility of A549 cells to Chlorin-H–PDT. In general, Chlorin-H is an effective antitumor photosensitizer in vitro and in vivo and is worthy of further study as a new drug candidate. TNFSF13 will be an important molecular target for the discovery of new photosensitizers.  相似文献   

3.
Tertiary hydroxyl class of C-imidazole bridgehead azaheptapyridine FPT inhibitors were prepared in an attempt to block in vivo oxidation of secondary hydroxyl series. One representative compound 5a exhibited potent enzyme (IC50 = 1.4 nM) and cellular activities (soft agar IC50 = 1.3 nM) with excellent oral pharmacokinetic profiles in rats, mice, monkeys and dogs. The in vivo study in wap-ras TG mouse models showed dose dependent tumor growth inhibition and regression.  相似文献   

4.
《Phytomedicine》2014,21(11):1292-1297
The present study was carried out to assess the photosensitizing potential of embelin, the biologically active natural product isolated from Embelia ribes in photodynamic therapy (PDT) experiments in vivo. In vitro PDT clearly indicated that embelin recorded significant cytotoxicity in Ehrlich's Ascites Carcinoma (EAC) cells, which is superior to 5-aminolevulinic acid, a known photodynamic compound. For in vivo experiments solid tumor was induced using EAC cells in the male Swiss albino mice of groups I, II, III and IV. Group I served as the control (without solid tumor), group II served as tumor bearing mice without treatment and groups III and IV served as treatments. At the completion of 4 weeks of induction, the tumor bearing mice from group III and IV were given an intraperitoneal injection with embelin (12.5 mg/kg body weight). After 24 h, tumor area in the Group III and IV animals was exposed to visible light from a 1000 W halogen lamp. The mice from groups I to III were sacrificed 2 weeks after the PDT treatment and the marker enzymes (myeloperoxidase [MPO], β-d-glucuronidase, and rhodanese) were assayed and expression of Bcl-2 and Bax were analyzed in normal and tumor tissues. Animals from group IV were sacrificed after 90 days of PDT treatment and the above mentioned parameters were recorded. Reduction in tumor volume and reversal of biochemical markers to near normal levels were observed in the treated groups. This is the first report on PDT using a natural compound for solid tumor control in vivo. The uniqueness of the mode of treatment lies in the selective uptake of the nontoxic natural compound, embelin from the medicinal plant E. ribes used in Indian system of medicine, by the solid tumor cells and their selective destruction using PDT without affecting the neighboring normal cells, which is much advantageous over radiation therapy now frequently used.  相似文献   

5.
A series of novel tubulin polymerization inhibitors (9a9p) have been synthesized and evaluated for their in vitro and in vivo biological activities. Among these compounds, 9e displayed strong antiproliferative activity against several tumor cell lines (IC50 = 0.15–0.62 μM). Compound 9e was also shown to arrest cells in the G2/M phase of the cell cycle and inhibit the polymerization of tubulin. Molecular docking studies suggested that 9e binds into the colchicine binding site of tubulin. In xenograft experiments, 9e exerted more potent anticancer effect than anticancer drug taxol against the H460 Human lung carcinoma in BALB/c nude mice. In summary, these findings suggest that 9e is a promising new antimitotic compound for the potential treatment of cancer.  相似文献   

6.
A novel series of pyrrolidine-2-carbonitrile and 4-fluoropyrrolidine-2-carbonitrile derivatives was designed, synthesized, and found to act as dipeptidyl peptidase-4 (DPP-4) inhibitors. From this series of compounds, compound 17a was identified as an efficacious, safe, and selective inhibitor of DPP-4. In vivo studies in ICR and KKAy mice showed that administration of this compound resulted in decreased blood glucose in these mice after an oral glucose challenge. Compound 17a showed high DPP-4 inhibitory activity (IC50 = 0.017 μM), moderate selectivity against DPP-4 (selective ratio: DPP-8/DPP-4 = 1324; DPP-9/DPP-4 = 1164), and good efficacy in oral glucose tolerance tests in ICR and KKAy mice. These in vivo anti-diabetic properties and its desirable pharmacokinetic profile in Sprague–Dawley rats demonstrate that compound 17a is a promising candidate for development as an anti-diabetic agent.  相似文献   

7.
A co-crystal structure of amide-containing compound (4) in complex with the nicotinamide phosphoribosyltransferase (Nampt) protein and molecular modeling were utilized to design and discover a potent novel cyanoguanidine-containing inhibitor bearing a sulfone moiety (5, Nampt Biochemical IC50 = 2.5 nM, A2780 cell proliferation IC50 = 9.7 nM). Further SAR exploration identified several additional cyanoguanidine-containing compounds with high potency and good microsomal stability. Among these, compound 15 was selected for in vivo profiling and demonstrated good oral exposure in mice. It also exhibited excellent in vivo antitumor efficacy when dosed orally in an A2780 ovarian tumor xenograft model. The co-crystal structure of this compound in complex with the NAMPT protein was also determined.  相似文献   

8.
The critical role of nuclear topoisomerase enzymes during cell proliferation process guided topoisomerases to be one of the major targets for anticancer drug development. We have designed and synthesized 22 heteroaromatic ring incorporated chalcone derivatives substituted with epoxide or thioepoxide. Topoisomerase enzyme inhibitory activity and cytotoxic tests were also conducted to evaluate compounds’ pharmacological efficacy. In the topoisomerase I inhibitory test, compound 1 was most active one, 24% of inhibition at 20 μM, among all the compounds but it was lower than camptothecin. Compounds 9, 11, and 13 inhibited the function of topoisomerase II more strongly than etoposide with almost same magnitude (around 90% and 30% inhibition at 100 and 20 μM, respectively) which were higher than those of etoposide (72% and 18% inhibition). In the cytotoxicity test, compound 9 inhibited T47D cancer cell growth with the IC50 value of 6.61 ± 0.21 μM. On the other hand, compound 13 (IC50: 4.32 ± 0.18 μM) effectively suppressed MDA-MB468 cancer cell growth.  相似文献   

9.
Following the identification of trisubstituted ureas as a promising new chemical series of allosteric modulators of the calcium sensing receptor (CaSR), we further explored the SAR around the urea substitution, leading to the discovery of benzothiazole urea compound 13. This compound is a potent calcimimetic with an EC50 = 20 nM (luciferase assay). Evaluated in an in vivo model of chronic renal failure (short term and long term in 5/6 nephrectomized rats), benzothiazole urea 13 significantly decreased PTH levels after oral administration while keeping calcemia within the normal range.  相似文献   

10.
A group of novel 4,5-dianilinophthalimide derivatives has been synthesized in this study for potential use as β-amyloid (Aβ) plaque probes. Staining of hippocampus tissue sections from Alzheimer’s disease (AD) brain with the representative compound 9 indicated selective labeling of it to Aβ plaques. The binding affinity of radioiodinated [125I]9 for AD brain homogenates was 0.21 nM (Kd), and of other derivatives ranged from 0.9 to 19.7 nM, except for N-methyl-4,5-dianilinophthalimide (Ki > 1000 nM). [125I]9 possessed the optimal lipophilicity with Log P value of 2.16, and its in vivo biodistribution in normal mice exhibited excellent initial brain uptake (5.16% ID/g at 2 min after injection) and a fast washout rate (0.56% ID/g at 60 min). The encouraging results suggest that this novel derivative of [123I]9 may have potential as an in vivo SPECT probe for detecting amyloid plaques in the brain.  相似文献   

11.
Chlorins, a class of plant porphyrins, are perspective as photosensitizing agents due to light absorption in the long wavelength spectral region and deeper photodamage of tissues. Aiming at optimization of antitumour properties of chlorins, we synthesized a series of boronated derivatives of chlorin e6 and their complexes containing Zn(II), Pd(II) or Sn(IV). The compounds were synthesized by alkylation of amino or hydroxy derivatives of chlorin e6 with 1-trifluoromethanesulfonylmethyl-o-carborane. Chlorin e6 13(1)-N-{2-[N-(o-carboran-1-yl)methyl]aminoethyl}amide-15(2), 17(3)-dimethyl ester (compound 5) formed complexes with serum albumin, a major porphyrin carrier. The binding constant of these complexes was ~4 times bigger than the respective value for the complexes of albumin with boron-free aminochlorin e6. Compound 5 potently sensitized rat fibroblasts to illumination with monochromatic red light: >98% of cells were necrotic by 24 h post-illumination with 1 μM of 5. This compound demonstrated high efficacy in photodynamic therapy of rat M-1 sarcoma. After PDT with 25 mg/kg of 5 the residual tumours were significantly smaller than in animals subjected to PDT with equal concentration of boron-free aminochlorin e6. No signs of general toxicity were detectable after PDT with 5. Thus, boronation can enhance the potency of chlorins in PDT, in particular, due to an increased binding to albumin. Our data expand the therapeutic applicability of boronated chlorins beyond boron neutron capture therapy; these agents emerge as dual efficacy photoradiosensitizers.  相似文献   

12.
Baicalein (5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one), a major flavonoid extracted from the root of Scutellaria baicalensis Georgi (Chinese name: Huangqin), showed potent anti-proliferative activity against a broad panel of human cancer cell lines both in vitro and in vivo. A novel series of baicalein derivatives were synthesized by introducing a group to C6-OH and a nitrogen-containing hydrophilic heterocyclic ring to C7-OH via a length of 3 or 4-carbon chain in this study. The in vitro antiproliferative activities of the 30 derivatives against HepG2, A549, BCG-823 cancer cell lines were evaluated. Among them, 10 compounds exhibit more potent cytotoxicity than baicalein against the three cancer cell lines. The most potent compound 9b possesses highest anti-proliferative potency against HepG2, A549, and BCG-823 with an IC50 value of 2.0 μM, 0.8 μM and 3.2 μM, respectively. Preliminary mechanism studies with compound 9b using Annexin V/PI double-staining assay and DAPI staining assay indicated that 9b inhibits tumor cell proliferation potentially through inducing apoptosis.  相似文献   

13.
A series of hesperidin derivatives were prepared and identified by IR, 1H NMR, and MS spectra. These compounds were evaluated in vitro and in vivo based on α-glucosidase inhibition, glucose consumption of HepG2 cells, and blood glucose level in streptozotocin-induced diabetic mice. The results revealed that all the compounds exhibited anti-hyperglycemic activities. The inhibition at 10?3 M of compounds 3 and 7a on α-glucosidase were 55.02% and 53.34%, respectively, as compared to 54.80% by acarbose. Treated by compound 3 and the reference drug metformin, glucose consumption of HepG2 cell were 1.78 and 2.11 mM, respectively. After the streptozotocin-induced diabetic mice were oral administrated with compound 3 at 100 mg kg?1 d?1 for 10 days, the blood glucose level of 3 treated mice (13.23 mM, P <0.05) showed significant difference when compared to model control (23.03 mM). Thus, compound 3 exhibited promising anti-hyperglycemic activity.  相似文献   

14.
A new series of ortho-naphthoquinone analogs of β-lapachone were designed, synthesized and evaluated. The biological results indicated that most of our compounds were efficient substrates for NQO1. The new scaffold with water-soluble side chain resulted in greater solubility under acidic condition compared to β-lapachone. Thus avoiding the use of hydroxylpropyl β-cyclodextrin which would finally cause the rapid drug clearance from the blood and dose-limiting toxicity in the form of hemolytic anemia. The most soluble and promising compound in this series was 2-((4-benzylpiperazin-1-yl)methyl)naphtho[2,1-d]oxazole-4,5-dione (3k), which inhibited cancer cell (NQO1-rich A549 cell line) growth at IC50 values of 4.6 ± 1.0 μmol·L−1. Furthermore, compound 3k had in vivo antitumor activity in an A549 tumor xenografts mouse model comparable to the activity obtained with β-lapachone. The results indicated that these ortho-naphthoquinones could serve as promising leads for further optimization as novel substrates for NQO1.  相似文献   

15.
The biological activities of six symmetrically substituted 2-methoxy-benzyl polymethylene tetraamines (14) and diphenylethyl polymethylene tetraamines (5 and 6) as N-methyl-d-aspartate (NMDA) receptor channel blockers, were evaluated in vitro and in vivo. Although all compounds exhibited stronger channel block activities in comparison to memantine in Xenopus oocytes voltage clamped at ?70 mV, only compound 2 (0.4 mg/kg intravenous injection) decreased the size of brain infarction in a photochemically induced thrombosis model mice at the same extent of memantine (10 mg/kg intravenous injection). Other compounds (1, 3, 4, 5 and 6) did not decrease the size of brain infarction significantly due to the limited injection doses. The present study suggests that compound 2 could represent a valuable lead compound to design low toxicity polyamines for clinical use against stroke.  相似文献   

16.
The epidermal growth factor receptor (EGFR/c-ErbB1/HER1) is overexpressed in many cancers including breast, ovarian, endometrial, and non-small cell lung cancer. An EGFR specific imaging agent could facilitate clinical evaluation of primary tumors and/or metastases. To achieve this goal we designed and synthesized a small array of fluorine containing compounds based on a 3-cyanoquinoline core. A lead compound, 16, incorporating 2′-fluoroethyl-1,2,3-triazole was selected for evaluation as a radioligand based on its high affinity for EGFR kinase (IC50 = 1.81 ± 0.18 nM), good cellular potency (IC50 = 21.97 ± 9.06 nM), low lipophilicity and good metabolic stability. ‘Click’ labeling afforded [18F]16 in 37.0 ± 3.6% decay corrected radiochemical yield based on azide [18F]14 and 7% end of synthesis (EOS) yield from aqueous fluoride. Compound [18F]16 was obtained with >99% radiochemical purity in a total synthesis time of 3 h. The compound showed good stability in vivo and a fourfold higher uptake in high EGFR expressing A431 tumor xenografts compared to low EGFR expressing HCT116 tumor xenografts. Furthermore, the radiotracer could be visualized in A431 tumor bearing mice by small animal PET imaging. Compound [18F]16 therefore constitutes a promising radiotracer for further evaluation for imaging of EGFR status.  相似文献   

17.
The uPAR·uPA protein–protein interaction (PPI) is involved in signaling and proteolytic events that promote tumor invasion and metastasis. A previous study had identified 4 (IPR-803) from computational screening of a commercial chemical library and shown that the compound inhibited uPAR·uPA PPI in competition biochemical assays and invasion cellular studies. Here, we synthesize 4 to evaluate in vivo pharmacokinetic (PK) and efficacy studies in a murine breast cancer metastasis model. First, we show, using fluorescence polarization and saturation transfer difference (STD) NMR, that 4 binds directly to uPAR with sub-micromolar affinity of 0.2 μM. We show that 4 blocks invasion of breast MDA-MB-231, and inhibits matrix metalloproteinase (MMP) breakdown of the extracellular matrix (ECM). Derivatives of 4 also inhibited MMP activity and blocked invasion in a concentration-dependent manner. Compound 4 also impaired MDA-MB-231 cell adhesion and migration. Extensive in vivo PK studies in NOD-SCID mice revealed a half-life of nearly 5 h and peak concentration of 5 μM. Similar levels of the inhibitor were detected in tumor tissue up to 10 h. Female NSG mice inoculated with highly malignant TMD-MDA-MB-231 in their mammary fat pads showed that 4 impaired metastasis to the lungs with only four of the treated mice showing severe or marked metastasis compared to ten for the untreated mice. Compound 4 is a promising template for the development of compounds with enhanced PK parameters and greater efficacy.  相似文献   

18.
closo-Dodecaborate lipid liposomes were developed as new vehicles for boron delivery system (BDS) of neutron capture therapy. The current approach is unique because the liposome shell itself possesses cytocidal potential in combination with neutron irradiation. The liposomes composed of closo-dodecaborate lipids DSBL and DPBL displayed high cytotoxicity with thermal neutron irradiation. The closo-dodecaborate lipid liposomes were taken up into the cytoplasm by endocytosis without degradation of the liposomes. Boron concentration of 22.7 ppm in tumor was achieved by injection with DSBL-25% PEG liposomes at 20 mg B/kg. Promising BNCT effects were observed in the mice injected with DSBL-25% PEG liposomes: the tumor growth was significantly suppressed after thermal neutron irradiation (1.8 × 1012 neutrons/cm2).  相似文献   

19.
A series of novel sorafenib derivatives, 9aw, was designed and synthesized in high yields using various substituted anilines, and their antiproliferative activities against HCT116, PC-3 and MDA-MB-231 cell lines were also evaluated and described. All compounds exhibited potent antiproliferative activity against HCT116 and PC-3 cells with IC50 = 2.8–52.0 and 2.2–45.6 μM; compounds 9p and 9q demonstrated competitive antiproliferative activities to sorafenib against all three cancer cell lines, the cytotoxicity of compound 9r is more potent than that of sorafenib. Compounds (9g, 9p, 9q and 9r) were chosen for further evaluation of the anti-angiogenesis activity, and showed the inhibition of sprout formation from aortic ring ex vivo. The structures of all the newly synthesized compounds were determined by 1H NMR, 13C NMR and HRMS.  相似文献   

20.
The objective of this study was to synthesize and evaluate a novel fluorine-18 labeled deuterium substituted analogue of rasagiline (9, [18F]fluororasagiline-D2) as a potential PET radioligand for studies of monoamine oxidase B (MAO-B).The precursor compound (6) and reference standard (7) were synthesized in multi-step syntheses. Radiolabeling of 9 was accomplished by a two-step synthesis, compromising a nucleophilic substitution followed by hydrolysis of the sulfamidate group. The incorporation radiochemical yield from fluorine-18 fluoride was higher than 30%, the radiochemical purity was >99% and the specific radioactivity was >160 GBq/μmol at the time of administration.In vitro compound 7 inhibited the MAO-B activity with an IC50 of 173.0 ± 13.6 nM. The MAO-A activity was inhibited with an IC50 of 9.9 ± 1.1 μM. The fluorine-18 version 9 was characterized in the cynomolgus monkey brain where a high brain uptake was found (275% SUV at 4 min). There was a higher uptake in the striatum and thalamus compared to the cortex and cerebellum. A pronounced blocking effect (50% decrease) was observed in the specific brain regions after administration of l-deprenyl (0.5 mg/kg) 30 min prior to the administration of 9. Radiometabolite studies demonstrated 40% of unchanged radioligand at 90 min post injection.An efficient radiolabeling of 9 was successfully established and in the monkey brain 9 binds to MAO-B rich regions and its binding is blocked by the selective MAO-B compound l-deprenyl. The radioligand 9 is a potential candidate for human PET studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号