首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims:  In this study, we propose (i) to study the photodynamic inactivation (PDI) efficiency of neutral and cationic porphyrin derivatives, (ii) to characterize the kinetics of the inactivation process using Bacillus cereus as a model endospore-producing bacterium and (iii) to conclude on the applicability of porphyrin derivatives in the inactivation of bacterial endospores.
Methods and Results:  The study of PDI of Bacillus cereus endospores, taken as model-endospores, using porphyrin derivatives differing in the number of positive charges and in the meso-substituent groups, showed that neutral, monocationic and dicationic porphyrins are quite ineffective, in contrast with the tri- and tetra-cationic molecules. The most effective porphyrin is a tricationic porphyrin with a meso-pentafluorophenyl group. With this photosensitizer (PS), at 0·5  μ mol l−1, a reduction of 3·5 log units occurs after only 4 min of irradiation. None of the porphyrin derivatives showed toxicity in the absence of light.
Conclusions:  Some porphyrin derivatives are efficient PSs for the inactivation of bacterial endospores and should be considered in further studies. Small modifications in the substituent groups, in addition to charge, significantly improve the effectiveness of the molecule as a PS for endospore inactivation.
Significance and Impact of the Study:  Tetrapyrrolic macrocycles should be regarded as worthy to explore for the PDI of spore-producing gram-positive bacteria. The development of molecules, more selective and effective, emerges as a new objective.  相似文献   

2.
The photodynamic effect of novel cationic porphyrins, with different pattern of meso-substitution by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl (A) and 4-(trifluoromethyl)phenyl (B) groups, have been studied in both solution bearing photooxidizable substrates and in vitro on a typical Gram-negative bacterium Escherichia coli. In these sensitizers, the cationic groups are separated from the macrocycle ring by a propoxy spacer. Thus, the charges have a high mobility and a minimal influence on photophysical properties of the porphyrin. These compounds produce singlet molecular oxygen, O2(1Delta(g)), with quantum yields of approximately 0.41-0.53 in N,N-dimethylformamide. In methanol, the l-tryptophan photodecomposition increases with the number of cationic charges in the sensitizer. In vitro investigations show that cationic porphyrins are rapidly bound to E. coli cells in approximately 5 min. A higher binding was found for A3B3+ porphyrin, which is tightly bound to cells still after three washing steps. Photosensitized inactivation of E. coli cellular suspensions follows the order: A3B3+ > A44+> ABAB2+ > AB3+. Under these conditions, a negligible effect was found for 5,10,15,20-tetra(4-sulfonatophenyl)porphyrin (TPPS4(4-)) that characterizes an anionic sensitizer. Also, the results obtained for these new cationic porphyrins were compared with those of 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin (TTAP4+), which is a standard active sensitizer established to eradicate E. coli. The photodynamic activity of TTAP4+ is quite similar to that produced by A4(4+). Studies in an anoxic condition indicate that oxygen is necessary for the mechanism of action of photodynamic inactivation of bacteria. The higher photodynamic activity of A3B3+ was confirmed by growth delay experiments. Photodynamic inactivation capacities of these sensitizers were also evaluated in E. coli cells immobilized on agar surfaces. Under these conditions, A3B3+ porphyrin retains a high activity to inactivate localized bacterial cells. Therefore, tricationic porphyrin A3B3+ is an interesting sensitizer with potential applications in photodynamic inactivation of bacteria in liquid suspensions or on surfaces.  相似文献   

3.
BackgroundPhotodynamic inactivation (PDI) is emerging as a promising alternative for cutaneous leishmaniasis (CL). The chemotherapy currently used presents adverse effects and cases of drug resistance have been reported. ZnTnHex-2-PyP4+ is a porphyrin with a high potential as a photosensitizer (PS) for PDI, due to its photophysical properties, structural stability, and cationic/amphiphilic character that can enhance interaction with cells. This study aimed to investigate the photodynamic effects mediated by ZnTnHex-2-PyP4+ on Leishmania parasites.MethodsZnTnHex-2-PyP4+ stability was evaluated using accelerated solvolysis conditions. The photodynamic action on promastigotes was assessed by (i) viability assays, (ii) mitochondrial membrane potential evaluation, and (iii) morphological analysis. The PS-promastigote interaction was studied. PDI on amastigotes and the cytotoxicity on macrophages were also analyzed.ResultsZnTnHex-2-PyP4+, under submicromolar concentration, led to immediate inactivation of more than 95% of promastigotes. PDI promoted intense mitochondrial depolarization, loss of the fusiform shape, and plasma membrane wrinkling in promastigotes. Fluorescence microscopy revealed a punctate PS labeling in the parasite cytoplasm. PDI also led to reductions of ca. 64% in the number of amastigotes/macrophage and 70% in the infection index after a single treatment session. No noteworthy toxicity was observed on mammalian cells.ConclusionsZnTnHex-2-PyP4+ is stable against demetallation and more efficient as PS than the ethyl analogue ZnTE-2-PyP4+, indicating readiness for evaluation in in vivo studies as an alternative approach to CL.General significanceThis report highlighted promising photodynamic effects mediated by ZnTnHex-2-PyP4+ on Leishmania parasites, opening up perspectives for applications in CL pre-clinical assays and PDI of other microorganisms.  相似文献   

4.
5.
Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs.  相似文献   

6.
The enveloped virions of a nuclear polyhedrosis virus (NPV) and those of a granulosis virus (GV) of the armyworm, Pseudaletia unipuncta, were isolated and purified from their inclusion bodies. The enveloped virion of NPV contained a large amount of phosphatidyl choline which was not detected in that of GV. The total electric charges distributed on the surface of the envelopes of NPV and GV were negative in neutral and alkaline solutions. Although there was little difference in charges between NPV and GV, the charge was less negative in NPV than in GV. When the negative charges were neutralized by cationic detergents, the NPV infectivity was enhanced.  相似文献   

7.
The size of the complex that is essential for the electron-transferactivity from the oxygen-evolving center to the secondary electronacceptor, QB, is about 250 kDa, as determined by target-sizeanalysis after the radiation inactivation of functions of photosystemII (PS II). Inter-Chl tranfer of excitation energy was insensitiveto the radiation inactivation indicating that the masses ofCP47, CP43, and light-harvesting Chi a/b proteins are not includedin the functional size of the oxygen-evolving PS II complex.The transfer of electrons from the secondary electron donor,Z, to QB was catalyzed by a unit of only 65 kDa. The sizes ofthe complexes involved in these light-induced functions of PSII were dependent on the intensity of actinic light. Under saturatingintensities of light, the functional size of the complex fortransfer of electrons from Z to QB was 38 kDa, with a correspondingdecrease in the size of the oxygen-evolving PS II from 250 kDato 125 kDa [Takahashi, Mano and Asada (1985) Plant Cell Physiol.26: 383]. The protein of about 30 kDa functions in the photoreductionof the pheophytin molecule, as well as in the electron transferfrom Z to QA. Under low-intensity light, complexes having thesame sizes as those of the basal functional complexes undersaturating-intensity light are further required, probably tostabilize separated charges in the PS II reaction center andthe oxygen-evolving center. (Received June 20, 1990; Accepted September 18, 1990)  相似文献   

8.
The cationic surfactant, cetyl (hexadecyl) trimethylammonium bromide (CTAB), completely inactivates porcine heart cytoplasmic malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37) at concentrations (of surfactant) which do not affect the activity of the mitochondrial isoenzyme. These concentrations are close to, or higher than, the critical micelle concentration of CTAB. An increase in the ionic strength of the medium significantly retards the CTAB-induced inactivation of the cytoplasmic enzyme. The enzyme is also markedly protected against CTAB inactivation by NADH; L-malate on its own has no effect but a combination of NADH and L-malate affords greater protection than NADH alone. The CTAB inactivation is not reversed by dilution of the surfactant. The highly selective action of CTAB on the two malate dehydrogenases, which correlates well with their electrostatic charges, has been exploited for a simple and reliable differential assay of these isoenzymes. The anionic surfactant, sodium dodecyl sulphate (SDS), at concentrations well below the critical micelle concentration, inactivates both isoenzymes, but the mitochondrial enzyme is significantly more sensitive than its cytoplasmic counterpart. There is thus some correlation, though not as strong as with CTAB, between SDS inactivation and the charges of the two malat dehydrogenases. An increase in ionic strength has opposite effects on the two isoenzymes: the mitochondrial enzyme becomes more resistant and the cytoplasmic enzyme less so. Both isoenzymes are rendered more resistant to SDS by the inclusion of NADH. Inactivation of the enzymes caused by short exposure to SDS is largely reversed by dilution of the detergent, but longer exposure leads to progressive irreversible loss of activity. NADH very effectively protects the isoenzymes against irreversible inactivation. It is likely that a reversible phase of inactivation precedes an irreversible phase and that in the former phase SDS acts competitively with NADH. Both malate dehydrogenases possess considerable resistance to the nonionic detergent, Triton X-100.  相似文献   

9.
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca2+, indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.  相似文献   

10.
Bacterial membrane lipids are critical for membrane bilayer formation, cell division, protein localization, stress responses, and pathogenesis. Despite their critical roles, membrane lipids have not been fully elucidated for many pathogens. Here, we report the discovery of a novel cationic glycolipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), which is synthesized in high abundance by the bacterium Streptococcus agalactiae (Group B Streptococcus, GBS). To our knowledge, Lys-Glc-DAG is more positively charged than any other known lipids. Lys-Glc-DAG carries 2 positive net charges per molecule, distinct from the widely described lysylated phospholipid lysyl-phosphatidylglycerol (Lys-PG) that carries one positive net charge due to the presence of a negatively charged phosphate moiety. We use normal phase liquid chromatography (NPLC) coupled with electrospray ionization (ESI) high-resolution tandem mass spectrometry (HRMS/MS) and genetic approaches to determine that Lys-Glc-DAG is synthesized by the enzyme MprF in GBS, which covalently modifies the neutral glycolipid Glc-DAG with the cationic amino acid lysine. GBS is a leading cause of neonatal meningitis, which requires traversal of the endothelial blood–brain barrier (BBB). We demonstrate that GBS strains lacking mprF exhibit a significant decrease in the ability to invade BBB endothelial cells. Further, mice challenged with a GBSΔmprF mutant developed bacteremia comparably to wild-type (WT) infected mice yet had less recovered bacteria from brain tissue and a lower incidence of meningitis. Thus, our data suggest that Lys-Glc-DAG may contribute to bacterial uptake into host cells and disease progression. Importantly, our discovery provides a platform for further study of cationic lipids at the host–pathogen interface.

Bacterial membrane lipids are critical for membrane bilayer formation, cell division, protein localization, stress responses, and pathogenesis. This study shows that the enzyme MprF in Streptococcus agalactiae synthesizes a novel cationic lipid, Lysyl-Glucosyl-Diacylglycerol, which aids meningitis progression in vivo.  相似文献   

11.
《BBA》1987,893(2):333-341
The level of phosphorylation of the 24 kDa and the 25 kDa light-harvesting chlorophyll a/b binding protein complex (LHC) II polypeptides in isolated spinach thylakoids has been determined by quantitative SDS-polyacrylamide gel electrophoresis. The time-course of phosphorylation, after correction for the molar abundance of these two polypeptides, shows that (a) the rate of phosphorylation of the 24 kDa polypeptide is at least 3-fold faster compared with the 25 kDa polypeptide, (b) the final extent of phosphorylation for both the polypeptides is very similar, and (c) the final extent of phosphorylation is typically between 0.15 and 0.25 mol phosphate per mol polypeptide. The low extent of phosphorylation is not simply a consequence of inactivation of the kinase and / or LHC II substrate or ATP depletion. These observations suggest that there are at least three different sub-populations of LHC II in isolated thylakoids: (i) phosphorylated ‘mobile’, (ii) phosphorylated ‘PS II-coupled’ and (iii) non-phosphorylated. Furthermore, the reported differences in the specific activity of phosphorylation for the ‘mobile’ and the ‘PS II-coupled’ LHC II sub-populations (Kyle, D.J. et al. (1984) Biochim. Biophys. Acta 765, 89–96) are no longer observed following correction for the non-phosphorylated LHC-II population.  相似文献   

12.
Nanocarriers with positive surface charges are known for their toxicity which has limited their clinical applications. The mechanism underlying their toxicity, such as the induction of inflammatory response, remains largely unknown. In the present study we found that injection of cationic nanocarriers, including cationic liposomes, PEI, and chitosan, led to the rapid appearance of necrotic cells. Cell necrosis induced by cationic nanocarriers is dependent on their positive surface charges, but does not require RIP1 and Mlkl. Instead, intracellular Na+ overload was found to accompany the cell death. Depletion of Na+ in culture medium or pretreatment of cells with the Na+/K+-ATPase cation-binding site inhibitor ouabain, protected cells from cell necrosis. Moreover, treatment with cationic nanocarriers inhibited Na+/K+-ATPase activity both in vitro and in vivo. The computational simulation showed that cationic carriers could interact with cation-binding site of Na+/K+-ATPase. Mice pretreated with a small dose of ouabain showed improved survival after injection of a lethal dose of cationic nanocarriers. Further analyses suggest that cell necrosis induced by cationic nanocarriers and the resulting leakage of mitochondrial DNA could trigger severe inflammation in vivo, which is mediated by a pathway involving TLR9 and MyD88 signaling. Taken together, our results reveal a novel mechanism whereby cationic nanocarriers induce acute cell necrosis through the interaction with Na+/K+-ATPase, with the subsequent exposure of mitochondrial damage-associated molecular patterns as a key event that mediates the inflammatory responses. Our study has important implications for evaluating the biocompatibility of nanocarriers and designing better and safer ones for drug delivery.  相似文献   

13.
During phagocytosis, the phosphoinositide content of the activated membrane decreases sharply, as does the associated surface charge, which attracts polycationic proteins. The cytosolic leaflet of the plasma membrane is enriched in phosphatidylserine (PS); however, a lack of suitable probes has precluded investigation of the fate of this phospholipid during phagocytosis. We used a recently developed fluorescent biosensor to monitor the distribution and dynamics of PS during phagosome formation and maturation. Unlike the polyphosphoinositides, PS persists on phagosomes after sealing even when other plasmalemmal components have been depleted. High PS levels are maintained through fusion with endosomes and lysosomes and suffice to attract cationic proteins like c-Src to maturing phagosomes. Phagocytic vacuoles containing the pathogens Legionella pneumophila and Chlamydia trachomatis, which divert maturation away from the endolysosomal pathway, are devoid of PS, have little surface charge, and fail to recruit c-Src. These findings highlight a function for PS in phagosome maturation and microbial killing.  相似文献   

14.
Deuterium nuclear magnetic resonance (2H NMR) was used to study the interaction of a cationic amphiphilic peptide with pure DMPC membranes and with mixed bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS). The choline and serine headgroups were selectively deuteriated at the alpha and beta positions. The amphiphilic peptide, with 20 leucine residues in the hydrophobic core and two cationic hydrophilic lysine residues at each end, spanned the lipid bilayer. Although 2H NMR experiments using DMPC with perdeuteriated fatty acyl chains showed that the average order parameter of the hydrophobic region was not significantly modified by the incorporation of the amphiphilic peptide, for either DMPC or DMPC/DMPS (5:1) bilayers, large perturbations of the quadrupolar splittings of the choline and serine headgroups were observed. The results obtained with the DMPC headgroup suggest that the incorporation of the cationic peptide in both DMPC and DMPC/DMPS (5:1) bilayers leads to a structural perturbation directly related to the net charge on the membrane surface. The magnitude of the observed effect seems to be similar to those observed previously with other cationic molecules [Seelig, J., MacDonald, P.M., & Scherer, P.G. (1987) Biochemistry 26, 7535-7541]. Two of the three quadrupolar splittings of the PS headgroup exhibited large variations in the presence of the amphiphilic peptide, while the third one remained unchanged. Our data have led us to propose a model describing the influence of membrane surface charges on headgroup conformation. In this model, the surface charge is represented as a uniform charge distribution. The electric field due to the charges produces a torque which rotates the polar headgroups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A cationic peptide, Td3701, which was derived from factor VIII that has affinity with phosphatidylserine (PS), showed efficient transfection ability for cells that express PS on the cell surface. PS is exposed on tumor cell surfaces therefore we have focused on PS as the target molecule for tumor specific gene delivery. In this article, to improve transfection efficiency and specificity in targeting tumor cells, some amino acid residues of Td3701 were replaced. The resulting peptide, Td3717, shows higher transfection efficiency (more than 30 times that of Td3701). The transfection efficiency was dependent on the amount of PS on the cell surface, suggesting that Td3717 bound with plasmid DNA could recognize PS on the cell surface. Td3717 is expected to be useful as an efficient gene carrier molecule specific to PS‐presenting tumor cells. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to address three questions: (1) which of the six positive charges in hERG's major voltage sensor, S4, are responsible for gating charge transfer during activation, (2) whether a negative charge in the cytoplasmic half of S2 (D466) also contributes to gating charge transfer, and (3) whether S4 serves as the sole voltage sensor for hERG inactivation. We individually mutate S4's positive charges and D466 to cysteine, and examine (a) effects of mutations on the number of equivalent gating charges transferred during activation (z(a)) and inactivation (z(i)), and (b) sidedness and state dependence of accessibility of introduced cysteine side chains to a membrane-impermeable thiol-modifying reagent (MTSET). Neutralizing the outer three positive charges in S4 and D466 in S2 reduces z(a), and cysteine side chains introduced into these positions experience state-dependent changes in MTSET accessibility. On the other hand, neutralizing the inner three positive charges in S4 does not affect z(a). None of the charge mutations affect z(i). We propose that the scheme of gating charge transfer during hERG's activation process is similar to that described for the Shaker channel, although hERG has less gating charge in its S4 than in Shaker. Furthermore, channel domain other than S4 contributes to gating charge involved in hERG's inactivation process.  相似文献   

17.
The structural and functional organization of the spinach chloroplast photosystems (PS) I, IIα and IIβ was investigated. Sensitive absorbance difference spectrophotometry in the ultraviolet (?A320) and red (?A700) regions of the spectrum provided information on the relative concentration of PS II and PS I reaction centers. The kinetic analysis of PS II and PS I photochemistry under continuous weak excitation provided information on the number (N) of chlorophyll (Chl) molecules transferring excitation energy to PS IIα, PS IIβ and PS I. Spinach chloroplasts contained almost twice as many PS II reaction centers compared to PS I reaction centers. The number Nα of chlorophyll (Chl) molecules associated with PS IIα was 234, while Nβ = 100 and NPS I = 210. Thus, the functional photosynthetic unit size of PS II reaction centers was different from that of PS I reaction centers. The relative electron-transport capacity of PS II was significantly greater than that of PS I. Hence, under light-limiting green excitation when both Chl a and Chl b molecules are excited equally, the limiting factor in the overall electron-transfer reaction was the turnover of PS I. The Chl composition of PS I, PS IIα and PS IIβ was analyzed on the basis of a core Chl a reaction center complex component and a Chl ab-LHC component. There is a dissimilar Chl ab-LHC composition in the three photosystems with 77% of total Chl b associated with PS IIα only. The results indicate that PS IIα, located in the membrane of the grana partition region, is poised to receive excitation from a wider spectral window than PS IIβ and PS I.  相似文献   

18.
The conformational changes associated with activation gating in Shaker potassium channels are functionally characterized in patch-clamp recordings made from Xenopus laevis oocytes expressing Shaker channels with fast inactivation removed. Estimates of the forward and backward rates for transitions are obtained by fitting exponentials to macroscopic ionic and gating current relaxations at voltage extremes, where we assume that transitions are unidirectional. The assignment of different rates is facilitated by using voltage protocols that incorporate prepulses to preload channels into different distributions of states, yielding test currents that reflect different subsets of transitions. These data yield direct estimates of the rate constants and partial charges associated with three forward and three backward transitions, as well as estimates of the partial charges associated with other transitions. The partial charges correspond to an average charge movement of 0.5 e0 during each transition in the activation process. This value implies that activation gating involves a large number of transitions to account for the total gating charge displacement of 13 e0. The characterization of the gating transitions here forms the basis for constraining a detailed gating model to be described in a subsequent paper of this series.  相似文献   

19.
1. Chloroplasts have been preilluminated by a sequence of n short saturating flashes immediately before alkalinization to pH 9.3, and brought back 2 min later to pH 7.8. The assay of Photosystem II activity through dichlorophenolindophenol photoreduction, oxygen evolution, fluorescence induction, shows that part of the centers is inactivated and that this part depends on the number of preilluminating flashes (maximum inhibition after one flash) in a way which suggests identification of state S2 as the target for alkaline inactivation.2. As shown by Reimer and Trebst ((1975) Biochem. Physiol. Pflanz. 168, 225–232) the inactivation necessitates the presence of gramicidin, which shows that the sensitive site is on the internal side of the thylakoid membrane.3. The electron flow through inactivated Photosystem II is restored by artificial donor addition (diphenylcarbazide or hydroxylamine); this suggests that the water-splitting enzyme itself is blocked. The inactivation is accompanied by a solubilization of bound Mn2+ and by the occurrence of EPR Signal II “fast”.4. Glutaraldehyde fixation before the treatment does not prevent the inactivation which thus does not seem to involve a protein structural change.  相似文献   

20.
Glycinebetaine, a compatible osmolyte of halotolerant plants and bacteria, partially protected photosystem (PS) 1 and PS2 electron transport reactions against thermal inactivation but with different efficiencies. In its presence, the temperature for half-maximal inactivation (t1/2) was generally shifted downward by 3–12 °C. Glycinebetaine stabilized photoinduced oxygen evolving reactions of PS2 by protecting the tetranuclear Mn cluster and the extrinsic proteins of this complex. A weaker, although noticeable, stabilizing effect was observed in photoinduced PS2 electron transport reactions that did not originate in the oxygen-evolving complex (OEC). This weaker protection by glycinebetaine was probably exerted on the PS2 reaction centre. Glycinebetaine protected also photoinduced electron transport across PS1 against thermal inactivation. The protective effect was exerted on plastocyanin, the mobile protein in the lumen that carries electrons from the integral cytochrome b 6 f complex to the PS1 complex. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号