首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myoblasts gene-engineered in vitro and then injected in vivo are safe, efficient options for gene therapy. While isolation of satellite cells is routinely achieved, their proliferation potential in vitro remains a limiting factor for cell transplantation under clinical conditions. We have studied the role of reversible inhibition of gene expression by antisense oligonucleotides on the proliferation of the myogenic cells. Addition of antisense oligonucleotides to myoblast cultures has been used to inhibit specifically the expression of the β1-integrin subunit gene. Here we show that the effects of multiple pulses of a phosphorothioate oligodeoxinucleotide antisense on the attachment to substrata and on the proliferation of myoblasts are dose-dependent. The addition of antisense to rat myoblasts caused rounding up of the cells and most of the cells became detached after several days in culture. A single pulse did not show any consistent effect, while in the presence of continously administered antisense, the relative numbers of myoblasts in the treated muscle culture increased. We have no evidence of inhibition of myoblast fusion under these conditions. On the other hand, [3H]-TdR incorporation, total DNA and total number of cells decreased in antisense-treated cultures thus demonstrating an inhibitory effect of the phosphorothioate oligonucleotides on DNA synthesis. These side-effects could be overcome by substituting the phosphorothioate by unmodified oligonucleotides, so decreasing the half-life of the antisense, but also its toxicity. The overall results suggest a potential role of integrin antisense strategy in modulating the potential of myoblasts to proliferate.  相似文献   

2.
The antisense approach is conceptually simple and elegant; to design an inhibitor of a specific mRNA, one needs only to know the sequence of the targeted mRNA and an appropriately modified complementary oligonucleotide. Of the many analogs of oligodeoxynucleotides explored as antisense agents, phosphorothioate analogs have been studied the most extensively. The use of phosphorothioate oligodeoxynucleotides as antisense agents in various studies have shown promising results. However, they have also indicated that quite often, biological effects observed could be solely or partly non-specific in nature. It is becoming clear that not all phosphorothioate oligodeoxynucleotides of varying length and base composition are the same, and important consideration should be given to maintain antisense mechanisms while identifying effective antisense oligonucleotides. In this review, I have summarized the progress made in my laboratory in understanding the specificity and mechanism of actions of phosphorothioate oligonucleotides and the rationale for designing second-generation mixed-backbone oligonucleotides.  相似文献   

3.
Oligonucleotides are effective tools for the regulation of gene expression in cell culture and model organisms, most importantly through antisense mechanisms. Due to the inherent instability of DNA antisense agents, various modifications have been introduced to increase the efficacy of oligonucleotides, including phosphorothioate DNA, locked nucleic acids, peptide nucleic acids, and others. Here, we present antisense agent stabilization through conjugation of a poly(ethylene glycol) (PEG) group to a DNA oligonucleotide. By employing a photocleavable linker between the PEG group and the antisense agent, we were able to achieve light-induced deactivation of antisense activity. The bioconjugated PEG group provides stability to the DNA antisense agent without affecting its native function of silencing gene expression via RNase H-catalyzed mRNA degradation. Once irradiated with UV light of 365 nm, the PEG group is cleaved from the antisense agent leaving the DNA unprotected and open for degradation by endogenous nucleases, thereby restoring gene expression. By using a photocleavable PEG group (PhotoPEG), antisense activity can be regulated with high spatial and temporal resolution, paving the way for precise regulation of gene expression in biological systems.  相似文献   

4.
It is widely accepted that most cell types efficiently exclude oligonucleotides in vitro and require specific delivery systems, such as cationic lipids, to enhance uptake and subsequent antisense effects. Oligonucleotides are not readily transfected into leukaemia cell lines using cationic lipid systems and streptolysin O (SLO) is used to effect their delivery. We wished to investigate the optimal oligonucleotide composition for antisense efficacy and specificity following delivery into leukaemia cells using SLO. For this study the well characterised chronic myeloid leukaemia cell line KYO-1 was selected and oligonucleotides (20mers) were targeted to an empirically identified accessible site of c- myc mRNA. The efficiency and specificity of antisense effect was measured 4 and 24 h after SLO-mediated delivery of the oligonucleotides. C5-propyne phosphodiester and phosphorothioate compounds were found to present substantial non-specific effects at 20 microM but were inactive at 0.2 microM. Indeed, no antisense-specific effect was noted at any concentration at either time. All of the other oligonucleotides tested induced some measurable antisense effect, except 7 (chimeric, all-phosphorothioate, 2'-methoxyethoxy termini) which was essentially inactive at 20 microM. The rank efficiency order of the remaining antisense compounds was 4 = 3 >> 9 >> 10 = 8 = 5 = 6 > 11. The efficient antisense effects induced by the chimeric methylphosphonate-phosphodiester compounds were found to be highly specific. Increased phosphorothioate content in the oligonucleotide backbone correlated with reduced antisense activity (efficacy: 2'-methoxyethoxy series 9 >> 8 >> 7, 2'-methoxytriethoxy series 10 > 11). No consistent evidence was obtained for increased activity correlating with increased oligonucleotide-mRNA heteroduplex thermal stability. In conclusion, the chimeric methylphosphonate-phosphodiester oligodeoxynucleotides present the most favourable characteristics of the compounds tested, for efficient and specific antisense suppression of gene expression following SLO-mediated delivery.  相似文献   

5.
Five different target regions along the length of the dengue virus type 2 genome were compared for inhibition of the virus following intracellular injection of the cognate antisense oligonucleotides and their analogs. Unmodified phosphodiester oligonucleotides as well as the corresponding phosphorothioate oligonucleotides were ineffective in bringing about a significant inhibition of the virus. Novel modified phosphorothioate oligonucleotides in which the C-5 atoms of uridines and cytidines were replaced by propynyl groups caused a significant inhibition of the virus. Antisense oligonucleotide directed against the target region near the translation initiation site of dengue virus RNA was the most effective, followed by antisense oligonucleotide directed against a target in the 3' untranslated region of the virus RNA. It is suggested that the inhibitory effect of these novel modified oligonucleotides is due to their increased affinity for the target sequences and that they probably function via an RNase H cleavage of the oligonucleotide:RNA heteroduplex.  相似文献   

6.
A novel, positive read-out assay that quantifies only sequence-specific nuclear activity of antisense oligonucleotides was used to evaluate morpholino and 2'-O-methyl sugar-phosphate oligonucleotides. The assay is based on modification of the splicing pathway of human beta-globin pre-mRNA. In addition, scrape-loading of cells with oligonucleotides allows the separate assessment of intracellular antisense activity of the oligonucleotides and their ability to penetrate the cell membrane barrier. The results show that, with scrape-loading, the morpholino oligonucleotides were approximately 3-fold more effective in their intrinsic antisense activity than alternating phosphodiester/phosphorothioate 2'-O-methyl-oligoribonucleotides and 6-9- and almost 200-fold more effective than the exclusively phosphorothioate and phosphodiester derivatives, respectively. The morpholino oligonucleotides were over 20-fold more effective than the phosphorothioate 2'-O-methyl-oligoribonucleotides in free uptake from the culture media. The antisense activity of the morpholino oligonucleotides was detectable not only in monolayer HeLa cells but also in suspension K562 cells. Time course experiments suggest that both the free uptake and efflux of morpholino oligonucleotides are slow.  相似文献   

7.
Brukner I  Tremblay GA 《Biochemistry》2000,39(37):11463-11466
There are numerous indications that the "antisense" mechanism alone cannot account for the observed effects in living cells. Despite that, interactions between antisense oligonucleotides (ASO) and cellular proteins are usually not considered. In this work, we have tested the ability of antisense phosphorothioate (SdT) oligonucleotides and natural deoxyoligonucleotides (dT) for their ability to interact with target RNA in the presence of cellular proteins. We show that the affinity for cellular proteins is an essential factor that determines the success of RNA targeting. We have used a simple nuclease digestion assay to detect RNA/ASO hybrid formation in the presence of proteins. The results show the inability of a phosphorothioate oligonucleotide (SdT18) to reach the target RNA (rA18) in vitro in the presence of proteins. However, if proteins are absent, the RNA targeting was successful, as is usual in in vitro assays. Note that the target RNA concentration exceeded physiological values by several orders of magnitude while the crude protein extract was 20-fold diluted in the reaction tube. This finding is compatible with the notion that therapeutic properties of phosphorothioates could largely derive from a so-called "aptamer" effect.  相似文献   

8.
BACKGROUND: Specific inhibition of target proteins by antisense oligodeoxynucleotides is an extensively studied experimental approach. This technique is currently being tested in clinical trials applying phosphorothioate-modified oligonucleotides as therapeutic agents. These polyanionic molecules, however, may also exert non-antisense-mediated effects. MATERIALS AND METHODS: We examined the influence of oligonucleotides on lipopolysaccharide (LPS)-stimulated tumor necrosis factor alpha (TNF alpha) synthesis in freshly isolated human peripheral blood mononuclear cells. Oligonucleotides (18 mer) with different degrees of phosphorothioate modification were studied. RESULTS: The addition of phosphorothioate oligonucleotides (5 microM) caused amplification of TNF synthesis of up to 410% compared with the control with LPS alone. Without LPS stimulation, phosphorothioate oligonucleotides did not induce TNF production. We demonstrate that the enhancement of LPS-stimulated TNF production by phosphorothioate oligonucleotides does not rely on the intracellular presence of oligonucleotides and is not mediated by LPS contamination. Partially phosphorothioate-modified oligonucleotides and unmodified oligonucleotides did not increase TNF synthesis. High concentrations of the polyanion heparin reversed the oligonucleotide-induced enhancement of TNF synthesis. CONCLUSIONS: The data suggest that amplification of TNF synthesis may be caused by binding of the polyanionic phosphorothioate oligonucleotide to cationic sites on the cell surface. Such binding sites have been proposed for polyanionic glycoaminoglycans of the extracellular matrix, which have also been described to augment LPS-stimulated TNF synthesis. The present results are relevant to all in vitro studies attempting to influence protein synthesis in monocytes by using phosphorothioate oligonucleotides. The significance of our findings for in vivo applications of phosphorothioates in situations where there is a stimulus for TNF synthesis, such as in sepsis, should be elucidated.  相似文献   

9.
A biological reporter gene assay was employed to determine the crucial parameters for maximizing selective targeting of a Ha-ras codon 12 point mutation (G----T) using phosphorothioate antisense oligonucleotides. We have tested a series of oligonucleotides ranging in length between 5 and 25 bases, each centered around the codon 12 point mutation. Our results indicate that selective targeting of this point mutation can be achieved with phosphorothioate antisense oligonucleotides, but this selectivity is critically dependent upon oligonucleotide length and concentration. The maximum selectivity observed in antisense experiments, 5-fold for a 17-base oligonucleotide, was closely predicted by a simple thermodynamic model that relates the fraction of mutant to wild type target bound as a function of oligonucleotide concentration and affinity. These results suggest thermodynamic analysis of oligonucleotide/target interactions is useful in predicting the specificity that can be achieved by an antisense oligonucleotide targeted to a single base point mutation.  相似文献   

10.
11.
目的:研究bFGF反义硫代寡核苷酸增强肿瘤细胞对化疗药物敏感性作用。方法:设计、合成bFGF寡核苷酸,用聚乙烯亚胺(polyemyleneimine,PEI)介导bFGF反义硫代寡核苷酸转染入黑色素瘤B16细胞,MTT法检测bFGF反义硫代寡核苷酸及其与化疗药物联合处理后的细胞增殖率;半定量RT-PCR测定bFGF反义硫代寡核苷酸转染后细胞中bFGF mRNA水平;流式细胞仪分析bFGF反义硫代寡核苷酸诱导的细胞凋亡。结果:bFGF反义硫代寡核苷酸对B16细胞增殖的抑制率为64.8%,且呈剂量依赖效应。B16细胞中bFGF mRNA被bFGF反义硫代寡核苷酸显著降低,为对照细胞的57.9%,且bFGF反义硫代寡核苷酸诱导B16细胞凋亡,凋亡率为41.8%。bFGF反义硫代寡核苷酸转染能显著增强B16细胞对阿霉素、5-氟脲嘧啶及顺铂的敏感性,非特异性硫代寡核苷酸不影响阿霉素、5-氟脲嘧啶及顺铂抑制B16细胞增殖。结论:bFGF反义硫代寡核苷酸显著增强B16细胞的化疗敏感性,表明其可协同化疗药物用于治疗肿瘤。  相似文献   

12.
Hexitol nucleic acids (HNAs) are nuclease resistant and provide strong hybridization to RNA. However, there is relatively little information on the biological properties of HNA antisense oligonucleotides. In this study, we compared the antisense effects of a chimeric HNA ‘gapmer’ oligonucleotide comprising a phosphorothioate central sequence flanked by 5′ and 3′ HNA sequences to conventional phosphorothioate oligonucleotides and to a 2′-O-methoxyethyl (2′-O-ME) phosphorothioate ‘gapmer’. The antisense oligomers each targeted a sequence bracketing the start codon of the message of MDR1, a gene involved in multi-drug resistance in cancer cells. Antisense and control oligonucleotides were delivered to MDR1-expressing cells using transfection with the cationic lipid Lipofectamine 2000. The anti-MDR1 HNA gapmer was substantially more potent than a phosphorothioate oligonucleotide of the same sequence in reducing expression of P-glycoprotein, the MDR1 gene product. HNA and 2′-O-ME gapmers displayed similar potency, but a pure HNA antisense oligonucleotide (lacking the phosphorothioate ‘gap’) was ineffective, indicating that RNase H activity was likely required. Treatment with anti-MDR1 HNA gapmer resulted in increased cellular accumulation of the drug surrogate Rhodamine 123 that correlated well with the reduced cell surface expression of P-glycoprotein. Thus, HNA gapmers may provide a valuable additional tool for antisense-based investigations and therapeutic approaches.  相似文献   

13.
14.
Abstract

6′-substituted carbocyclic deoxyribonucleosides and 2′-O-ethylene glycol substituted ribonucleosides have been evaluated as building blocks for antisense oligonucleotides. Within the former class 6′-hydroxy substituted building blocks in combination with internucleoside phosphorothioate linkages have the potential to enhance antisense activity. 2′-O-ethylene glycol substituted ribonucleosides generally allow for the construction of potent antisense oligonucleotides with reduced phosphorothioate content, but differences exist in their effects on biological activity in cell culture in spite of virtually identical effects on RNA-binding affinity. Activity enhancement was most pronounced for a 2′-O-methoxyethyl substituent.  相似文献   

15.
We have previously described the characterization of a 20mer phosphorothioate oligodeoxynucleotide (ISIS 4189) which inhibits murine protein kinase C-alpha (PKC-alpha) gene expression, both in vitro and in vivo. In an effort to increase the antisense activity of this oligonucleotide, 2'-O-propyl modifications have been incorporated into the 5'- and 3'-ends of the oligonucleotide, with the eight central bases left as phosphorothioate oligodeoxynucleotides. Hybridization analysis demonstrated that these modifications increased affinity by approximately 8 and 6 degrees C per oligonucleotide for the phosphodiester (ISIS 7815) and phosphorothioate (ISIS 7817) respectively when hybridized to an RNA complement. In addition, 2'-O-propyl incorporation greatly enhanced the nuclease resistance of the oligonucleotides to snake venom phosphodiesterase or intracellular nucleases in vivo. The increase in affinity and nuclease stability of ISIS 7817 resulted in a 5-fold increase in the ability of the oligonucleotide to inhibit PKC-alpha gene expression in murine C127 cells, as compared with the parent phosphorothioate oligodeoxynucleotide. Thus an RNase H-dependent phosphorothioate oligodeoxynucleotide can be modified as a 2'-O-propyl 'chimeric' oligonucleotide to provide a significant increase in antisense activity in cell culture.  相似文献   

16.
17.
The potential of anionic liposomes for oligonucleotide delivery was explored because the requirement for a net-positive charge on transfection-competent cationic liposome-DNA complexes is ambiguous. Liposomes composed of phosphatidylglycerol and phosphatidylcholine were monodisperse and encapsulated oligonucleotides with 40-60% efficiency. Ionic strength, bilayer charge density, and oligonucleotide chemistry influenced encapsulation. To demonstrate the biological efficacy of this vector, antisense oligonucleotides to p53 delivered in anionic liposomes were tested in an in vitro model of excitotoxicity. Exposure of hippocampal neurons to glutamate increased p53 protein expression 4-fold and decreased neuronal survival to approximately 35%. Treatment with 1 microm p53 antisense oligonucleotides in anionic liposomes prevented glutamate-induced up-regulation of p53 and increased neuronal survival to approximately 75%. Encapsulated phosphorothioate p53 antisense oligonucleotides were neuroprotective at 5-10-fold lower concentrations than when unencapsulated. Replacing the anionic lipid with phosphatidylserine significantly decreased neuroprotection. p53 antisense oligonucleotides complexed with cationic liposomes were ineffective. Neuroprotection by p53 antisense oligonucleotides in anionic liposomes was comparable with that by glutamate receptor antagonists and a chemical inhibitor of p53. Anionic liposomes were also capable of delivering plasmids and inducing transgene expression in neurons. Anionic liposome-mediated internalization of Cy3-labeled oligonucleotides by neurons and several other cell lines demonstrated the universal applicability of this vector.  相似文献   

18.
Four types of phosphorothioate antisense oligonucleotides for transforming growth factor-β2 were synthesized and tested for their antisense activity in U937 cells. The full-length phosphorothioate modified antisense analogues exhibited the highest inhibitory effects on the transforming growth factor-β2 expression in U937 cells.  相似文献   

19.
Minimally modified oligonucleotides belong to the second-generation antisense class. They are phosphodiester oligonucleotides with a minimum of phosphorothioate linkages in order to be protected against serum and cellular exonucleases and endonucleases. They activate RNase H, have weak interactions with proteins, and have thus a better antisense efficiency. Two of them have been designed from an all-phosphorothioate antisense oligonucleotide directed against mdrl-expressing cells. They are protected against serum and cellular enzymatic degradation by the self-forming hairpin d(GCGAAGC) at their 3'-end and by judiciously located phosphorothioate residues, depending on the cellular composition in exonucleases or endonucleases. Besides their already demonstrated ability to cleave pyrimidine sites, endonucleases show some specificity for CpG sites. Their activity is hindered if specific sites are involved in secondary structure as hairpin.  相似文献   

20.
C Boiziau  J J Toulmé 《Biochimie》1991,73(11):1403-1408
We have investigated the behaviour of antisense oligonucleotides in rabbit reticulocytes. Both backbone-modified oligomers (methyl-phosphonate and phosphorothioate analogues), anomers of nucleotide units (alpha) and oligonucleotides linked to various ligands (intercalator, polylysine, dodecanol) were tested with respect to cellular uptake and inhibition of protein synthesis. Oligonucleotides added at an external concentration of 10 microM slowly entered the cell up to a concentration of a few hundred nanomolars. A large fraction of phosphorothioate analogues was found to be associated with the membrane. alpha-, methylphosphonate and phosphorothioate analogues remained intact during the incubation with reticulocytes although the latter were partly dephosphorylated. Antisense oligonucleotides were targeted against three different sites of the rabbit beta-globin mRNA: the 5' end of the message, the initiator AUG or the coding sequence. No specific effect on beta-globin synthesis was observed with any of the investigated compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号