首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Owing to its unique function in assisting the release of newly formed virus particles from the surface of an infected cell, neuraminidase, an antigenic glycoprotein enzyme, is a main target for drug design against influenza viruses. The group-1 neuraminidase of influenza virus possesses a 150-cavity, which is adjacent to the active pocket, and which renders conformational change from the ‘open’ form to the ‘closed’ form when the enzyme is binding with a ligand. Using AutoGrow evolutionary algorithm, one very unique fragment is screened out from the fragment databases by exploiting additional interactions with the 150-cavity. Subsequently, three derivatives were constructed by linking the unique fragment to oseltamivir at its three different sites. The three derivatives thus formed show much stronger inhibition power than oseltamivir, and hence may become excellent candidates for developing new and more powerful drugs for treating influenza. Or at the very least, the findings may stimulate new strategy or provide useful insights for working on the target vitally important to the health of human beings.  相似文献   

2.
Eight series of compounds, each series containing two to five compounds were prepared by structural modifications of a lead, which was previously discovered as a mild influenza neuraminidase (NA) inhibitor. On the basis of the biological result, a detailed structure–activity relationship (SAR) was derived and discussed. Several caffeic acid derivatives that acted as non-competitive inhibitors were close or superior to the lead and also presented good antiviral activities in cells. Besides, it was interesting to find that modifications of the lead with different strategies could result in selective inhibition against N1 or N2. The preliminary docking analysis indicated that the 150-cavity of the enzymes played an important role in the selective inhibition.  相似文献   

3.
Recently, many natural products, especially some plant-derived polyphenols have been found to exert antiviral effects against influenza virus and show inhibitory activities on neuraminidases (NAs). In our research, we took caffeic acid which contained two phenolic hydroxyl groups as the basic fragment to build a small compound library with various structures. The enzyme inhibition result indicated that some compounds exhibited moderate activities against NA and compound 15d was the best with IC50 = 7.2 μM and 8.5 μM against N2 and N1 NAs, respectively. The 3,4-dihydroxyphenyl group from caffeic acid was important for the activity according to the docking analysis. Besides, compound 15d was found to be a non-competitive inhibitor with Ki = 11.5 ± 0.25 μM by the kinetic study and also presented anti-influenza virus activity in chicken embryo fibroblast cells. It seemed promising to discover more potent NA inhibitors from caffeic acid derivatives to cope with influenza virus.  相似文献   

4.
Although several flavonoids have been reported to exert inhibitory effects on influenza H1N1 neuraminidase (NA), little is known about the structure-activity relationship and binding mode. Three dimensional QSAR (quantitative structure-activity relationship) and molecular docking approaches were applied to explore the structural requisites of flavone derivatives for NA inhibitory activity. A meaningful QSAR model with R(2) of 0.5968, Q(2) of 0.6457, and Pearson-R value of 0.8679, was constructed. From the QSAR model, it could be seen how 6-OH, 3'-OH, 4'-OH, and 8-position substituent affect the NA inhibitory activity. Molecular docking study between the most active compound and NA suggested that hydrogen bonds, hydrophobic and electrostatic interactions were closely related to NA inhibitory activity, 5-OH and 7-OH may be essential for this activity. The results provide a set of useful guidelines for the rational design of novel NA inhibitors.  相似文献   

5.
Tamiflu, the ethyl ester form of oseltamivir carboxylic acid (OC), is the first orally available anti-influenza drug for the front-line therapeutic option. In this study, the OC-hydroxamates, OC-sulfonamides and their guanidino congeners (GOC) were synthesized. Among them, an OC-hydroxamate 7d bearing an O-(2-indolyl)propyl substituent showed potent NA inhibition (IC50 = 6.4 nM) and good anti-influenza activity (EC50 = 60.1 nM) against the wild-type H1N1 virus. Two GOC-hydroxamates (9b and 9d) and one GOC-sulfonamide (12a) were active to the tamiflu-resistant H275Y virus (EC50 = 2.3–6.9 μM).  相似文献   

6.
Influenza A virus poses a great threat to global health, and oseltamivir (trade marked as Tamiflu), which targets influenza surface glycoprotein neuraminidase (NA), is used clinically as a major anti-influenza treatment. However, certain substitutions in NA can render an influenza virus resistant to this drug. In this study, using a lentiviral pseudotyping system, which alleviates the safety concerns of studying highly pathogenic influenza viruses such as avian influenza H5N1, that utilizes influenza surface glycoproteins (hemagglutinin or HA, and NA) and an HIV-core combined with a luciferase reporter gene as a surrogate assay, we first assessed the functionality of NA by measuring pseudovirion release in the absence or presence of oseltamivir. We demonstrated that oseltamivir displays a dose-dependent inhibition on NA activity. In contrast, a mutant NA (H274Y) is more resistant to oseltamivir treatment. In addition, the effects of several previously reported substitution NA mutants were examined as well. Our results demonstrate that this lentivirus-based pseudotyping system provides a quick, safe, and effective way to assess resistance to neuraminidase inhibitors. And we believe that as new mutations appear in influenza isolates, their impact on the effectiveness of current and future anti-NA can be quickly and reliably evaluated by this assay.  相似文献   

7.
Neuraminidase (NA) is one of the particular potential targets for novel antiviral therapy. In this work, a series of neuraminidase inhibitors with the cyclohexene scaffold were studied based upon the combination of 3D-QSAR, molecular docking, and molecular dynamics techniques. The results indicate that the built 3D-QSAR models yield reliable statistical information: the correlation coefficient (r2) and cross-validation coefficient (q2) of CoMFA (comparative molecular field analysis) are 0.992 and 0.819; the r2 and q2 of CoMSIA (comparative molecular similarity analysis) are 0.992 and 0.863, respectively. Molecular docking and MD simulations were conducted to confirm the detailed binding mode of enzyme-inhibitor system. The new NA inhibitors had been designed, synthesized, and their inhibitory activities against group-1 neuraminidase were determined. One agent displayed excellent neuraminidase inhibition, with IC50 value of 39.6?μM against NA, while IC50 value for oseltamivir is 61.1?μM. This compound may be further investigated for the treatment of infection by the new type influenza virus.  相似文献   

8.
The pandemic influenza AH1N1 (2009) caused an outbreak of human infection that spread to the world. Neuraminidase (NA) is an antigenic surface glycoprotein, which is essential to the influenza infection process, and is the target of anti-flu drugs oseltamivir and zanamivir. Currently, NA inhibitors are the pillar pharmacological strategy against seasonal and global influenza. Although mutations observed after NA-inhibitor treatment are characterized by changes in conserved amino acids of the enzyme catalytic site, it is possible that specific amino acid substitutions (AASs) distant from the active site such as H274Y, could confer oseltamivir or zanamivir resistance. To better understand the molecular distribution pattern of NA AASs, we analyzed NA AASs from all available reported pandemic AH1N1 NA sequences, including those reported from America, Africa, Asia, Europe, Oceania, and specifically from Mexico. The molecular distributions of the AASs were obtained at the secondary structure domain level for both the active and catalytic sites, and compared between geographic regions. Our results showed that NA AASs from America, Asia, Europe, Oceania and Mexico followed similar molecular distribution patterns. The compiled data of this study showed that highly conserved amino acids from the NA active site and catalytic site are indeed being affected by mutations. The reported NA AASs follow a similar molecular distribution pattern worldwide. Although most AASs are distributed distantly from the active site, this study shows the emergence of mutations affecting the previously conserved active and catalytic site. A significant number of unique AASs were reported simultaneously on different continents.  相似文献   

9.
Neuraminidase has been considered as an important target for designing agents against influenza viruses. In a discovery of anti-influenza agents with epigoitrin as the initial lead compound, a series of 1-amino-2-alkanols were synthesized and biologically evaluated. The in vitro evaluation indicated that (E)-1-amino-4-phenylbut-3-en-2-ol (C1) had better inhibitory activities than 2-amino-1-arylethan-1-ol derivatives. To our surprise, sulfonation of C1 with 4-methoxybenzenesulfonyl chloride afforded more active inhibitor II with up to 6.4?μM IC50 value against neuraminidase. Furthermore, docking of inhibitor II into the active site of NA found that the H atoms in both NH2 and OH groups of inhibitor II were the key factors for potency. Molecular docking research did not explained very well the observed structure-activity relationship (SAR) from amino acid residue level, but also aided the discovery of (E)-1-amino-4-phenylbut-3-en-2-ol derivatives as novel and potent NA inhibitors.  相似文献   

10.
The guanidine function in the potent neuraminidase inhibitor peramivir was included early on in the drug design process, and examination of X-ray structural data for the enzyme-inhibitor complex would seem to indicate that the guanidine plays a critical role in promoting binding. However, this functional group may also contribute to the poor oral availability of the drug. Given that the relative stereochemistry on the guanidine-bearing carbon in peramivir is opposite to that in zanamivir (a related neuraminidase inhibitor, for which the guanidine function is known to contribute substantially to the potency), we sought to determine the importance of the guanidine group to peramivir's overall potency. Here we report that the de-guanidinylated analogue of peramivir is only ca. 1-order of magnitude less potent than peramivir itself in two in vitro inhibition assays. This suggests that next-generation inhibitors designed to improve on peramivir's properties might profitably dispense with the guanidine function.  相似文献   

11.
Early and accurate diagnosis of influenza viruses can decrease its harmful impact. Here, we have synthesized fluorescent sialic acid derivatives that are cleaved by influenza neuraminidases (NAs) and not by Streptococcus pneumoniae that also inhabits the human olfactory. We have also attempted to develop assays that could differentiate between influenza virus and S. pneumoniae by taking advantage of the structural differences between NAs from these pathogens.  相似文献   

12.
GS4071 is a potent inhibitor of influenza neuraminidase. A precolumn fluorescence derivatization HPLC method is described for the analysis of GS4071 in rat plasma. Plasma samples were subjected to solid-phase extraction on C18 extraction columns. After extraction, GS4071 was derivatized with naphthalenedialdehyde in the presence of potassium cyanide to produce highly fluorescent cyano[f]benzoisoindole derivatives. Derivatized samples were stable for >24 h at 4°C. The samples were analyzed by an isocratic HPLC method using fluorescence detection at 420 nm excitation and 470 nm emission wavelength. The method was validated and applied to the analysis of plasma samples from pre-clinical pharmacokinetic studies in rats. The limit of detection for GS4071 was 20 ng/ml. For five replicate samples at 50, 400, and 1000 ng/ml, the within-day precision values were 16.9, 9.4 and 4.5%, respectively, and the between-day precision values were 16.9, 7.9, and 2.1%, respectively. The method was linear from 25 to 1600 ng/ml and the total recovery was >68% over this concentration range.  相似文献   

13.
A series of novel influenza neuraminidase (NA) inhibitors based on thiazole core were synthesized and evaluated for their ability to inhibit NA of influenza A virus (H3N2). All compounds were synthesized in good yields starting from commercially available 2-amino-4-thiazole-acetic ester using a suitable synthetic strategy. These compounds showed moderate inhibitory activity against influenza A NA. The most potent compound of this series is compound 4d (IC50?=?3.43 μM), which is about 20-fold less potent than oseltamivir, and could be used to design novel influenza NA inhibitors that exhibit increased activity based on thiazole ring.  相似文献   

14.
A series of substituted acyl(thio)urea and 2H-1,2,4-thiadiazolo [2,3-a] pyrimidine derivatives were prepared and both of their cell culture and enzymatic activity toward influenza virus were tested. Their in vitro neuraminidase inhibitory activities were in good agreement with the corresponding activities in cultured cells and they were evaluated as potent neuraminidase inhibitors. Of the analogues that demonstrated IC50s < 0.1 μM, 16 and 60 were further investigated as candidates with the most potential for future development. The molecular docking work of the representative compound was described to provide more insight into their mechanism of action and further rationalize the observations of this new series herein, which represents a novel class of highly potent and selective inhibitors of influenza virus.  相似文献   

15.
Inhibition of influenza A virus sialidase activity by sulfatide   总被引:4,自引:0,他引:4  
Sulfatide, which binds to influenza A viruses and prevents the viral infection, was found to inhibit the sialidase activities of influenza A viruses in a pH-dependent manner. The kinetic parameters of the effect of sulfatide on the sialidase activities of human influenza A viruses using fluorometric assay indicated that sulfatide was a powerful and non-competitive type inhibitor in low-pH conditions.  相似文献   

16.
目的建立甲型H1N1流感疫苗神经氨酸酶含量测定参考品。方法对甲型H1N1流感疫苗原液进行还原电泳后,采用免疫印迹,糖蛋白染色,方法初步确定甲流H1N1疫苗原液中神经氨酸酶SDS-PAGE条带位置,切取条带后通过edman N端测序法进行确认。采用Lowry法进行总蛋白定量,SDS-PAGE密度扫描的方法确定神经氨酸酶比例,计算出疫苗原液中神经氨酸酶含量。结果确定甲流疫苗原液中神经氨酸酶在SDS-PAGE中相对分子质量约71 000,对多批次疫苗原液进行测定后,选取神经氨酸酶含量较高的批次进行测定,总蛋白质量浓度为1046.00μg/m L,神经氨酸酶质量分数11.78%。二者相乘得出该批次疫苗原液神经氨酸酶含量为123.22μg/m L。结论研究成功建立了甲型H1N1流感疫苗神经氨酸酶含量测定参考品,其他毒株生产的流感疫苗也可以参考该方法建立NA含量测定参考品。  相似文献   

17.
All influenza viral neuraminidases (NA) of both type A and B viruses have only one universally conserved sequence located between amino acids 222–230. A monoclonal antibody against this region has been previously reported to provide broad inhibition against all nine subtypes of influenza A NA; yet its inhibitory effect against influenza B viral NA remained unknown. Here, we report that the monoclonal antibody provides a broad inhibition against various strains of influenza B viruses of both Victoria and Yamagata genetic lineage. Moreover, the growth and NA enzymatic activity of two drug resistant influenza B strains (E117D and D197E) are also inhibited by the antibody even though these two mutations are conformationally proximal to the universal epitope. Collectively, these data suggest that this unique, highly-conserved linear sequence in viral NA is exposed sufficiently to allow access by inhibitory antibody during the course of infection; it could represent a potential target for antiviral agents and vaccine-induced immune responses against diverse strains of type B influenza virus.  相似文献   

18.
Analysis of inhibitor binding in influenza virus neuraminidase   总被引:11,自引:0,他引:11       下载免费PDF全文
2,3-didehydro-2-deoxy-N:-acetylneuraminic acid (DANA) is a transition state analog inhibitor of influenza virus neuraminidase (NA). Replacement of the hydroxyl at the C9 position in DANA and 4-amino-DANA with an amine group, with the intention of taking advantage of an increased electrostatic interaction with a conserved acidic group in the active site to improve inhibitor binding, significantly reduces the inhibitor activity of both compounds. The three-dimensional X-ray structure of the complexes of these ligands and NA was obtained to 1.4 A resolution and showed that both ligands bind isosterically to DANA. Analysis of the geometry of the ammonium at the C4 position indicates that Glu119 may be neutral when these ligands bind. A computational analysis of the binding energies indicates that the substitution is successful in increasing the energy of interaction; however, the gains that are made are not sufficient to overcome the energy that is required to desolvate that part of the ligand that comes in contact with the protein.  相似文献   

19.
Influenza virus A (IVA) infection is responsible for recent death worldwide. Hence, there is a need to develop therapeutic agents against the virus. We describe the prediction of short interfering RNA (siRNA) as potential therapeutic molecules for the HA (Haemagglutinin) and NA (Neuraminidase) genes. We screened 90,522 siRNA candidates for HA and 13,576 for NA and selected 1006 and 1307 candidates for HA and NA, respectively based on the proportion of viral sequences that are targeted by the corresponding siRNA, with complete matches. Further short listing to select siRNA with no off-target hits, fulfilling all the guidelines mentioned in approach, provided us 13 siRNAs for haemagglutinin and 13 siRNAs for neuraminidase. The approach of finding siRNA using multiple sequence alignments of amino acid sequences has led to the identification of five conserved amino acid sequences, three in hemagglutinin i.e. RGLFGAIAGFIE, YNAELLV and AIAGFIE and two in neuraminidase i.e. RTQSEC and EECSYP which on reveres translation provided siRNA sequences as potential therapeutic candidates. The approaches used during this study have enabled us to identify potentially therapeutic siRNAs against divergent IVA strains.  相似文献   

20.
ObjectiveInfluenza A virus belongs to the most studied virus and its mutant initiates epidemic and pandemics outbreaks. Inoculation is the significant foundation to diminish the risk of infection. To prevent an incidence of influenza from the transmission, various practical approaches require more advancement and progress. More efforts and research must take in front to enhance vaccine efficacy.MethodsThe present research emphasizes the development and expansion of a universal vaccine for the influenza virus. Research focuses on vaccine design with high efficacy. In this study, numerous computational approaches were used, covering a wide range of elements and ideas in bioinformatics methodology. Various B and T-cell epitopic peptides derived from the Neuraminidase protein N1 are recognized by these approaches. With the implementation of numerous obtained databases and bioinformatics tools, the different immune framework methods of the conserved sequences of N1 neuraminidase were analyzed. NCBI databases were employed to retrieve amino acid sequences. The antigenic nature of the neuraminidase sequence was achieved by the VaxiJen server and Kolaskar and Tongaonkar method. After screening of various B and T cell epitopes, one efficient peptide each from B cell epitope and T cell epitopes was assessed for their antigenic determinant vaccine efficacy. Identical two B cell epitopes were recognized from the N1 protein when analyzed using B-cell epitope prediction servers. The detailed examination of amino acid sequences for interpretation of B and T cell epitopes was achieved with the help of the ABCPred and Immune Epitope Database.ResultsComputational immunology via immunoinformatic study exhibited RPNDKTG as having its high conservancy efficiency and demonstrated as a good antigenic, accessible surface hydrophilic B-cell epitope. Among T cell epitope analysis, YVNISNTNF was selected for being a conserved epitope. T cell epitope was also analyzed for its allergenicity and cytotoxicity evaluation. YVNISNTNF epitope was found to be a non-allergen and not toxic for cells as well. This T-cell epitope with maximum world populace coverages was scrutinized for its association with the HLA-DRB1*0401 molecule. Results from docking simulation analyses showed YVNISNTNF having lower binding energy, the radius of gyration (Rg), RMSD values, and RMSE values which make the protein structure more stable and increase its ability to become an epitopic peptide for influenza virus vaccination.ConclusionsWe propose that this epitope analysis may be successfully used as a measurement tool for the robustness of an antigen–antibody reaction between mutant strains in the annual design of the influenza vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号