首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have previously shown that 3-nitro-1H-1,2,4-triazole-based amines demonstrate significant trypanocidal activity, in particular against Trypanosoma cruzi, the causative parasite of Chagas disease. In the present work we further expanded our research by evaluating in vitro the trypanocidal activity of nitrotriazole-based piperazines and nitrotriazole-based 2-amino-1,3-benzothiazoles to establish additional SARs. All nitrotriazole-based derivatives were active or moderately active against T. cruzi; however two of them did not fulfill the selectivity criteria. Five derivatives were active or moderately active against Trypanosoma brucei rhodesiense while one derivative was moderately active against Leishmania donovani. Active compounds against T. cruzi demonstrated selectivity indexes (toxicity to host cells/toxicity to T. cruzi amastigotes) from 117 to 1725 and 12 of 13 compounds were up to 39-fold more potent than the reference compound benznidazole. Detailed SARs are discussed.  相似文献   

2.
Chagas disease is an endemic parasitic infection caused by Trypanosomacruzi that affects 18-20 million people in Central and South America. Recently we described the Epoxy-α-Lap, an oxyran derivative of α-lapachone, which presents a low toxicity profile and a high inhibitory activity against T.cruzi epimastigotes forms, the non-infective form of this parasite. In this work we described the trypanocidal effects of Epoxy-α-Lap on extracellular (trypomastigote) and intracellular (amastigote) infective forms of two T. cruzi strains (Y and Colombian) known by their different infective profile. Our results showed that Epoxy-α-Lap is lethal to trypomastigote Y and Colombian strains (97% and 84%, respectively). Interestingly, Epoxy-α-Lap also showed a trypanocidal effect in human macrophage infected with T. cruzi Y (85.6%) and Colombian (71.9%) strains amastigote forms. Similar effects were observed on T. cruzi amastigote infected Vero cells (96.4% and 95.0%, respectively). Our results pointed Epoxy-α-Lap as a potential candidate for Chagas disease chemotherapy since it presents trypanocidal activity on all T. cruzi forms with low) toxicity profile.  相似文献   

3.
Trypanosoma brucei and Trypanosoma cruzi are the etiologic agents of sleeping sickness and Chagas disease, respectively, two of the 17 preventable tropical infectious diseases (NTD) which have been neglected by governments and organizations working in the health sector, as well as pharmaceutical industries. High toxicity and resistance are problems of the conventional drugs employed against trypanosomiasis, hence the need for the development of new drugs with trypanocidal activity. In this work we have evaluated the trypanocidal activity of a series of N1,N2-dibenzylethane-1,2-diamine hydrochlorides (benzyl diamines) and N1-benzyl,N2-methyferrocenylethane-1,2-diamine hydrochlorides (ferrocenyl diamines) against T. brucei and T. cruzi parasite strains. We show that incorporation of the ferrocenyl group into the benzyl diamines increases the trypanocidal activity. The molecules exhibit potential trypanocidal activity in vitro against all parasite strains. Cytotoxicity assay was also carried out to evaluate the toxicity in HepG2 cells.  相似文献   

4.
Acetylcholinesterase (EC 3.1.1.7), a key acetylcholine-hydrolyzing enzyme in cholinergic neurotransmission, is present in a variety of states in situ, including monomers, C-terminally disulfide-linked homodimers, homotetramers, and up to three tetramers covalently attached to structural subunits. Could oligomerization that ensures high local concentrations of catalytic sites necessary for efficient neurotransmission be affected by environmental factors? Using small-angle X-ray scattering (SAXS) and cryo-EM, we demonstrate that homodimerization of recombinant monomeric human acetylcholinesterase (hAChE) in solution occurs through a C-terminal four-helix bundle at micromolar concentrations. We show that diethylphosphorylation of the active serine in the catalytic gorge or isopropylmethylphosphonylation by the RP enantiomer of sarin promotes a 10-fold increase in homodimer dissociation. We also demonstrate the dissociation of organophosphate (OP)-conjugated dimers is reversed by structurally diverse oximes 2PAM, HI6, or RS194B, as demonstrated by SAXS of diethylphosphoryl-hAChE. However, binding of oximes to the native ligand-free hAChE, binding of high-affinity reversible ligands, or formation of an SP-sarin-hAChE conjugate had no effect on homodimerization. Dissociation monitored by time-resolved SAXS occurs in milliseconds, consistent with rates of hAChE covalent inhibition. OP-induced dissociation was not observed in the SAXS profiles of the double-mutant Y337A/F338A, where the active center gorge volume is larger than in wildtype hAChE. These observations suggest a key role of the tightly packed acyl pocket in allosterically triggered OP-induced dimer dissociation, with the potential for local reduction of acetylcholine-hydrolytic power in situ. Computational models predict allosteric correlated motions extending from the acyl pocket toward the four-helix bundle dimerization interface 25 Å away.  相似文献   

5.
Novel hybrids bearing a 2-aminopyrimidine (2-AP) moiety linked to substituted 1,3,4-oxadiazoles were designed, synthesized and biologically evaluated. Among the developed compounds, 28 noncompetitively inhibited human acetylcholinesterase (hAChE; pIC50?=?6.52; Ki?=?0.17?µM) and showed potential in vitro antioxidant activity (60.0%) when evaluated using the Ellman’s and DPPH assays, respectively. Compound 28 competitively displaced propidium iodide (PI) from the peripheral anionic site (PAS) of hAChE (17.6%) and showed high blood-brain barrier (BBB) permeability, as observed in the PAMPA-BBB assay. Additionally, compound 28 inhibited hAChE-induced Aβ aggregation in a concentration-dependent manner according to the thioflavin T assay and was devoid of neurotoxic liability towards SH-SY5Y cell lines, as demonstrated by the MTT assay. The behavioral studies of compound 28 in mice showed a significant reversal of scopolamine-induced amnesia, as observed in Y-maze and passive avoidance tests. Furthermore, compound 28 exhibited significant AChE inhibition in the brain in ex vivo studies. An evaluation of oxidative stress biomarkers revealed the antioxidant potential of 28. Moreover, in silico molecular docking and dynamics simulation studies were used as a computational tool to evaluate the interactions of compound 28 with the active site residues of hAChE.  相似文献   

6.
Current drugs against human African trypanosomiasis (HAT) suffer from several serious drawbacks. The search for novel, effective, brain permeable, safe, and inexpensive antitrypanosomal compounds is therefore an urgent need. We have recently reported that the 4-aminoquinoline derivative huprine Y, developed in our group as an anticholinesterasic agent, exhibits a submicromolar potency against Trypanosoma brucei and that its homo- and hetero-dimerization can result in to up to three-fold increased potency and selectivity. As an alternative strategy towards more potent smaller molecule anti-HAT agents, we have explored the introduction of ω-cyanoalkyl, ω-aminoalkyl, or ω-guanidinoalkyl chains at the primary amino group of huprine or the simplified 4-aminoquinoline analogue tacrine. Here, we describe the evaluation of a small in-house library and a second generation of newly synthesized derivatives, which has led to the identification of 13 side chain modified 4-aminoquinoline derivatives with submicromolar potencies against T. brucei. Among these compounds, the guanidinononyltacrine analogue 15e exhibits a 5-fold increased antitrypanosomal potency, 10-fold increased selectivity, and 100-fold decreased anticholinesterasic activity relative to the parent huprine Y. Its biological profile, lower molecular weight relative to dimeric compounds, reduced lipophilicity, and ease of synthesis, make it an interesting anti-HAT lead, amenable to further optimization to eliminate its remaining anticholinesterasic activity.  相似文献   

7.
A series of new 2-aminonaphthoquinones and related compounds were synthesized and evaluated in vitro as trypanocidal and cytotoxic agents. Some tested compounds inhibited epimastigote growth and trypomastigote viability. Several compounds showed similar or higher activity and selectivity as compared with current trypanocidal drug, nifurtimox. Compound 4l exhibit higher selectivity than nifurtimox against Trypanosoma cruzi in comparison with Vero cells. Some of the synthesized quinones were tested against cancer cells and normal fibroblasts, showing that certain chemical modifications on the naphthoquinone moiety induce and excellent increase the selectivity index of the cytotoxicity (4g and 10). The results presented here show that the anti-T. cruzi activity of 2-aminonaphthoquinones derivatives can be improved by the replacement of the benzene ring by a pyridine moiety. Interestingly, the presence of a chlorine atom at C-3 and a highly lipophilic alkyl group or aromatic ring are newly observed elements that should lead to the discovery of more selective cytotoxic and trypanocidal compounds.  相似文献   

8.
Chagas disease remains a serious public health problem in several Latin American countries. New chemotherapy is urgently needed since current drugs are limited in efficacy and exhibit undesirable side effects. Aromatic diamidines and analogs are well known anti-parasitic agents and in this study, we have evaluated the in vitro trypanocidal effect of several different heterocyclic cationic compounds, including diamidines (DB1195, DB1196 and DB1345), a monoamidine (DB824), an arylimidamide (DB613A) and a guanylhydrazone (DB1080) against amastigotes and bloodstream trypomastigotes of Trypanosoma cruzi, the etiological agent of Chagas disease. Our present findings showed that all compounds exerted, at low-micromolar doses, a trypanocidal effect upon both intracellular parasites and bloodstream trypomastigotes of T. cruzi. The activity of DB1195, DB1345, DB824 and DB1080 against bloodstream forms was reduced when these compounds were assayed in the presence of mouse blood possibly due to their association with plasma constituents and/or due to metabolic instability of the compounds. However, trypanocidal effects of DB613A and DB1196 were not affected by plasma constituents, suggesting their potential application in the prophylaxis of banked blood. In addition, potency and selectivity of DB613A, towards intracellular parasites, corroborate previous results that demonstrated the highly promising activity of arylimidamides against this parasite, which justify further studies in experimental models of T. cruzi infection.  相似文献   

9.
Novel hybrids N-(4-phenoxybenzyl)aniline were designed, synthesized, and evaluated for their potential AChE inhibitory activity along with antioxidant potential. The inhibitory potential (IC50) of synthesized analogs was evaluated against human cholinesterases (hAChE and hBChE) using Ellman’s method. Among all the tested compounds, 42 with trimethoxybenzene substituent showed maximum hAChE inhibition with the competitive type of enzyme inhibition (IC50 = 1.32 µM; Ki = 0.879 µM). Further, parallel artificial membrane permeation assay (PAMPA-BBB) showed favorable BBB permeability by most of the synthesized compounds. Meanwhile, compound 42 also inhibited AChE-induced Aβ aggregation (39.5–66.9%) in thioflavin T assay. The in vivo behavioral studies showed dose-dependent improvement in learning and memory by compound 42. The ex vivo studies also affirmed the significant AChE inhibition and antioxidant potential of compound 42 in brain homogenates.  相似文献   

10.
The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing β-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC50: 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti–T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC50 values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.  相似文献   

11.
Rhodium-catalyzed [2 + 2 + 2] cycloadditions, sulfonyl phthalide annulations and nitroalkene reactions have been employed for the synthesis of 56 quinone-based compounds. These were evaluated against Trypanosoma cruzi, the parasite that causes Chagas disease. The reactions described here are part of a program that aims to utilize modern, versatile and efficient synthetic methods for the one or two step preparation of trypanocidal compounds. We have identified 9 compounds with potent activity against the parasite; 3 of these were 30-fold more potent than benznidazole (Bz), a drug used for the treatment of Chagas disease. This article provides a comprehensive outline of reactions involving over 120 compounds aimed at the discovery of new quinone-based frameworks with activity against T. cruzi.  相似文献   

12.
Drug-like molecules with activity against Trypanosoma brucei are urgently required as potential therapeutics for the treatment of African sleeping sickness. Starting from known inhibitors of other glycosyltransferases, we have developed the first small molecular inhibitors of dolicholphosphate mannose synthase (DPMS), a mannosyltransferase critically involved in glycoconjugate biosynthesis in T. brucei. We show that these DPMS inhibitors prevent the biosynthesis of glycosylphosphatidylinositol (GPI) anchors, and possess trypanocidal activity against live trypanosomes.  相似文献   

13.
(±)-Licarin A (1) was obtained by oxidative coupling, and its enantiomers, (?)-licarin A (2) and (+)-licarin A (3), were resolved by chiral HPLC. Schistosomicidal and trypanocidal activities of these compounds were evaluated in vitro against Schistosoma mansoni adult worms and trypomastigote forms of Trypanosoma cruzi. The racemic mixture (1) displayed significant schistosomicidal activity with an LC50 value of 53.57 μM and moderate trypanocidal activity with an IC50 value of 127.17 μM. On the other hand, the (?)-enantiomer (2), displaying a LC50 value of 91.71 μM, was more active against S. mansoni than the (+)-enantiomer (3), which did not show activity. For the trypanocidal assay, enantiomer 2 showed more significant activity (IC50 of 23.46 μM) than enantiomer 3, which showed an IC50 value of 87.73 μM. Therefore, these results suggest that (±)-licarin A (1) and (?)-licarin A (2) are promising compounds that could be used for the development of schistosomicidal and trypanocidal agents.  相似文献   

14.
The novel hybrids bearing 4-aminopyridine (4-AP) tethered with substituted 1,3,4-oxadiazole nucleus were designed, synthesized, and evaluated for their potential AChE inhibitory property along with significant antioxidant potential. The inhibitory potential (IC50) of synthesized analogs was evaluated against human cholinesterases (hAChE and hBChE) using Ellman’s method. Among all the compounds, 9 with 4-hydroxyl substituent showed maximum hAChE inhibition with the non-competitive type of enzyme inhibition (IC50 = 1.098 µM; Ki = 0.960 µM). Further, parallel artificial membrane permeation assay (PAMPA-BBB) showed significant BBB permeability in most of the synthesized compounds. Meanwhile, compound 9 also inhibited AChE-induced Aβ aggregation (38.2–65.9%) by thioflavin T assay. The in vivo behavioral studies showed dose-dependent improvement in learning and memory by compound 9. The ex vivo studies also affirmed the significant AChE inhibition and antioxidant potential of compound 9 in brain homogenates.  相似文献   

15.
The trypanocidal activity of normal human serum has been studied in vitro using Trypanosoma brucei as the test organism. The variables affecting the rate and extent of lysis, such as time, temperature, serum concentration, and pleomorphism of trypanosomes, are described. Trypanocidal titers of serum and serum fractions were quantitatively determined under standardized incubation conditions. Inactivation and/or removal of components of both the classical and alternate pathways of complement activation had no effect on the trypanocidal properties of human serum. The active factor was nondialyzable, present in plasma at equivalent levels to that in serum, and not removed by absorption with IgG fractions of antisera against human IgM or α2-macroglobulin. The trypanocidal factor could be inactivated by heat (65 C), dithiothreitol, urea, and trypsin. Gel filtration studies indicated that the trypanocidal activity eluted as a single protein with a molecular weight of about 500,000.  相似文献   

16.
A multi-step cascade strategy using integrated ligand- and target-based virtual screening methods was developed to select a small number of compounds from the ZINC database to be evaluated for trypanocidal activity. Winnowing the database to 23 selected compounds, 12 non-covalent binding cruzain inhibitors with affinity values (K i) in the low micromolar range (3–60 µM) acting through a competitive inhibition mechanism were identified. This mechanism has been confirmed by determining the binding mode of the cruzain inhibitor Nequimed176 through X-ray crystallographic studies. Cruzain, a validated therapeutic target for new chemotherapy for Chagas disease, also shares high similarity with the mammalian homolog cathepsin L. Because increased activity of cathepsin L is related to invasive properties and has been linked to metastatic cancer cells, cruzain inhibitors from the same library were assayed against it. Affinity values were in a similar range (4–80 µM), yielding poor selectivity towards cruzain but raising the possibility of investigating such inhibitors for their effect on cell proliferation. In order to select the most promising enzyme inhibitors retaining trypanocidal activity for structure-activity relationship (SAR) studies, the most potent cruzain inhibitors were assayed against T. cruzi-infected cells. Two compounds were found to have trypanocidal activity. Using compound Nequimed42 as precursor, an SAR was established in which the 2-acetamidothiophene-3-carboxamide group was identified as essential for enzyme and parasite inhibition activities. The IC50 value for compound Nequimed42 acting against the trypomastigote form of the Tulahuen lacZ strain was found to be 10.6±0.1 µM, tenfold lower than that obtained for benznidazole, which was taken as positive control. In addition, by employing the strategy of molecular simplification, a smaller compound derived from Nequimed42 with a ligand efficiency (LE) of 0.33 kcal mol−1 atom−1 (compound Nequimed176) is highlighted as a novel non-peptidic, non-covalent cruzain inhibitor as a trypanocidal agent candidate for optimization.  相似文献   

17.
Twenty-three alkaloids and five steroids and triterpenes have been isolated and identified from the root bark and stem bark of a Nigerian Tabernaemontana pachysiphon. The following bases have not previously been obtained from this species: isositsirikine, 16-epiisositsirikine, normacusine B, 16-epiaffinine, anhydrovobasindiol, tubotaiwine, ibogaline, isovoacangine, voacamine, lochnericine, 3R-hydroxyconopharyngine, 3S-hydroxyconopharyngine and 11-demethylconoduramine, the last three being new alkaloids. The dimeric indole alkaloids and 3R/S-hydroxyconopharyngine were shown to possess strong antibacterial activity against Gram-positive bacteria and the dimers against Gram-negative bacteria also.  相似文献   

18.
Chromosomeless “minicells” are formed by misplaced cell fissions near the polar extremities of an Escherichia coli K-12 mutant strain. Resistance (R)-factor deoxyribonucleic acid (DNA) can be introduced into minicells by segregation from an R+ (R64-11) derivative of the original mutant. We have assessed the ability of R+ minicells to correct defects produced in their plasmid DNA by ultraviolet (UV) and gamma radiations. Minicells harboring plasmid DNA, in comparison with their repair-proficient minicell-producing parents, possess (i) an equal competence to rejoin single-strand breaks induced in DNA by gamma rays, (ii) a reduced capacity for the photoenzymatic repair of UV-induced pyrimidine dimers, and (iii) a total inability to excise dimers, apparently owing to a deficiency in UV-specific endonuclease activity responsible for mediating the initial incision step in excision repair. Assuming that the DNA repair properties of R+ minicells reflect the concentration of repair enzymes located in the plasmid-containing polar caps of entire cells, these findings suggest that: (i) the enzymes responsible for rejoining single-strand breaks are distributed throughout the cell; (ii) photoreactivating enzyme molecules tend to be concentrated near bacterial DNA and to a lesser extent near plasmid DNA; and (iii) UV-specific endonuclease molecules are primarily confined to the central region of the E. coli cell and, thus, seldom segregate with R-factor DNA into minicells.  相似文献   

19.
Thirteen new polyamine derivatives coupled to hydroxybenzotriazole have been synthesized and evaluated for their in vitro antikinetoplastid activity. Trypanosoma Trypanothione reductase (TryR) was envisioned as a potential target. Among all tested molecules, only one compound, a N3-spermidine–benzotriazole derivative, displayed relevant inhibitory activity on this enzyme but was not active on parasites. The corresponding Boc-protected spermidine–benzotriazole was however trypanocidal against Trypanosoma brucei gambiense with an IC50 value of 1 μM and was completely devoid of cytotoxicity. On the intramacrophage amastigotes of Leishmania donovani, a N2-spermidine conjugate of this series, exhibited an interesting IC50 value of 3 μM associated with both low cytotoxicity against axenic Leishmania donovani. These new compounds are promising leads for the development of antikinetoplastid agents and their targets have to be deciphered.  相似文献   

20.
Ferrante A., Rowan-Kelly B. and Thong Y. H. 1984. In vitro sensitivity of virulent Acanthamoeba culbertsoni to a variety of drugs and antibiotics. International Journal for Parasitology14: 53–56. Effective chemotherapy for diseases caused by species of Acanthamoeba has been hampered because of the marked resistance of these amoebae to a variety of antimicrobial agents. In the present study, we investigated the sensitivity of A. culbertsoni to a spectrum of antimicrobial agents previously not examined against either A. culbertsoni or other species of Acanthamoeba. The antimicrobial agents previously not tested against Acanthamoeba species displayed either little or no activity; isoniazid, rifamycin, tinidazole and rolitetracycline, marginal activity; primaquine, or strong activity; ketoconazole, mefloquine, colistin (polymixin E) and AmB methyl ester. Interestingly, the amoeba showed marked sensitivity to colistin (MIC = 0–0195 μg/ml).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号