首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Life sciences》1996,59(16):PL255-PL261
The effects of specific inhibitors of cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) on the inhibitory activity of phosphodiesterase (PDE) type IV inhibitors and of the cell permeable analogue of cAMP, db-cAMP, were investigated on fMLP-induced arachidonate release from human monocytes. When monocytes were preincubated with the combined PKA/PKG inhibitor H8 (10−6 to 10−4 M) or the selective PKG inhibitor Rp-8-cpt-cGMPs (10−6 to 10−4 M) a concentration-dependent reduction of the inhibitory effect of db-cAMP (10 M), rolipram (10−5 M) and Ro 20-1724 (10−5 M) was noted. When monocytes were preincubated with the selective PKA inhibitor H89 (10−6 to 10−4 M), only a small inhibition of the effect of db-cAMP and no inhibition of the effects of rolipram and Ro 20–1724 were observed. The present data indicate that db-cAMP and PDE IV inhibitors elicit an in vitro anti-inflammatory activity by a PKA-independent mechanism, which do not appear to be mainly mediated via the PKG activation.  相似文献   

2.
Novel series of some triazolo[4,3-b]pyridazine derivatives were designed and synthesized. All the newly synthesized compounds were evaluated for their cytotoxic activity at 10−5 M concentration towards 60 cancer cell lines according to USA NCI protocol. Most of the synthesized compounds showed good activity against SR (leukemia) cell panel. The most active compounds, 2f and 4a were subjected for further evaluation at a five dose level screening and their efficacy for c-Met kinase inhibition was determined in vitro. Binding mode of these derivatives was explored via molecular docking.  相似文献   

3.
In extracts of human platelets, three isoenzymes of cyclic nucleotide phosphodiesterase (PDE), namely, PDE2, PDE3, and PDE5, were identified; activities of PDE1 and PDE4 were not detected. In human platelets, the cGMP-hydrolytic activity was about six times higher than the cAMP-hydrolytic activity, and PDE5 and PDE3 are the major phosphodiesterase isoenzymes that hydrolyze cGMP and CAMP, respectively. PDE5 exhibited organ-specific expression in humans, and platelets were among the tissues richest in PDE5. A novel inhibitor of PDE5, sodium 1-[6-chloro-4-(3,4-methylenedioxybenzyl)aminoquinazolin-2-yl] piperidine-4-carboxylate sesquihydrate (E4021), was a potent and highly selective inhibitor of human platelet PDE5. However, E4021 (up to 10 μM) did not inhibit 9,11-epithio-11,12-methano-thromboxane A2-induced platelet aggregation, in vitro. E4021 plus SIN-1 (3-morpholino-sydnonimine), at concentrations that had little effect individually, inhibited aggregation. These results suggest the unique distribution of phosphodiesterase isoenzymes in human platelets and the PDE5 inhibitors might be useful as a new class of antiplatelet drugs.  相似文献   

4.
This study deals with design and synthesis of novel benzofuran–pyrazole hybrids as anticancer agents. Eight compounds were chosen by National Cancer Institute (NCI), USA to evaluate their in vitro antiproliferative activity at 10−5 M in full NCI 60 cell panel. The preliminary screening of the tested compounds showed promising broad-spectrum anticancer activity. Compound 4c was further assayed for five dose molar ranges in full NCI 60 cell panel and exhibited remarkable growth inhibitory activity pattern against Leukemia CCRF-CEM, MOLT-4, Lung Cancer HOP-92, Colon Cancer HCC-2998, CNS Cancer SNB-75, Melanoma SK-MEL-2, Ovarian Cancer IGROV1, Renal Cancer 786-0, RXF 393, Breast Cancer HS 578T and T-47D (GI50: 1.00–2.71 μM). Moreover, enzyme assays were carried out to investigate the possible antiproliferative mechanism of action of compound 4c. The results revealed that compound 4c has good c-Src inhibitory activity at 10 μM. In addition, molecular docking studies showed that 4c could bind to the ATP Src pocket sites. Fulfilling the Lipinskiís rule of five in addition to its ADME profile and the biological results, all strongly suggest that 4c is a promising Src kinase inhibitor.  相似文献   

5.
A series of novel rutaecarpine derivatives were synthesized and subjected to pharmacological evaluation as PDE5 inhibitors. The structure–activity relationships were discussed and their binding conformation and simultaneous interaction mode were further clarified by the molecular docking studies. Among the 25 analogues, compound 8i exhibited most potent PDE5 inhibition with IC50 values about 0.086 μM. Moreover, it also produced good effects against scopolamine-induced cognitive impairment in vivo. These results might bring significant instruction for further development of potential PDE5 inhibitors derived from rutaecarpine as a good candidate drug for the treatment of Alzheimer’s disease.  相似文献   

6.
Several new 10-formyl and 10-hydroxymethyl derivatives of 5,8,10-trideazapteroic acid have been synthesized by a novel and convenient enamine alkylation procedure. Two of these compounds (10a and 10b) were shown to be very powerful inhibitors of L. casei (10a, IC50 = 8 × 10−6 M ; 10b, IC50 = 7 × 10−6 M ) and recombinant mouse (10a, IC50 = 3.4 × 10−5 M ; 10b, IC50 = 2.8 × 10−5 M ) glycinamide ribonucleotide formyltransferase (GARFT). These IC50 values are comparable to the classical GARFT inhibitor (6R)-DDATHF (IC50, L. casei 2.3 × 10−6M ; recombinant mouse 2.3 × 10−5 M ) under identical assay conditions. For both compounds, the inhibition of L. casei GARFT increased with time of incubation, but not markedly with the recombinant mouse enzyme. Due to their potential ability to interfere with purine biosynthesis and to penetrate microbial cells the new nonclassical GARFT inhibitors reported here may be useful for the treatment of infections caused by microorganisms that are sensitive and resistant to conventional antimicrobial agents.  相似文献   

7.
A cell-based high-throughput screen (HTS) was developed to detect phosphodiesterase 8 (PDE8) and PDE4/8 combination inhibitors. By replacing the Schizosaccharomyces pombe PDE gene with the murine PDE8A1 gene in strains lacking adenylyl cyclase, we generated strains whose protein kinase A (PKA)-stimulated growth in 5-fluoro orotic acid (5FOA) medium reflects PDE8 activity. From our previously-identified PDE4 and PDE7 inhibitors, we identified a PDE4/8 inhibitor that allowed us to optimize screening conditions. Of 222,711 compounds screened, ∼0.2% displayed composite Z scores of >20. Additional yeast-based assays using the most effective 367 compounds identified 30 candidates for further characterization. Among these, compound BC8-15 displayed the lowest IC50 value for both PDE4 and PDE8 inhibition in in vitro enzyme assays. This compound also displays significant activity against PDE10A and PDE11A. BC8-15 elevates steroidogenesis in mouse Leydig cells as a single pharmacological agent. Assays using BC8-15 and two structural derivatives support a model in which PDE8 is a primary regulator of testosterone production by Leydig cells, with an additional role for PDE4 in this process. BC8-15, BC8-15A, and BC8-15C, which are commercially available compounds, display distinct patterns of activity against PDE4, PDE8, PDE10A, and PDE11A, representing a chemical toolkit that could be used to examine the biological roles of these enzymes in cell culture systems.  相似文献   

8.
Inhibitors of the 5-Lipoxygenase (5-LOX) pathway have a therapeutic potential in a variety of inflammatory disorders such as asthma. In this study, chemical feature based pharmacophore models of inhibitors of 5-LOX have been developed with the aid of HipHop and HypoGen modules within Catalyst program package. The best quantitative pharmacophore model, Hypo1, which has the highest correlation coefficient (0.97), consists of two hydrogen-bond acceptors, one hydrophobic feature and one ring aromatic feature. Hypo1 was further validated by test set and cross validation method. The application of the model shows great success in predicting the activities of 65 known 5-LOX inhibitors in our test set with a correlation coefficient of 0.85 with a cross validation of 95% confidence level, proving that the model is reliable in identifying structurally diverse compounds for inhibitory activity against 5-LOX. Furthermore, Hypo1 was used as a 3D query for screening Maybridge and NCI databases within catalyst and also drug like compounds obtained from Enamine Ltd, which follow Lipinski’s rule of five. The hit compounds were subsequently subjected to filtering by docking and visualization, to identify the potential lead molecules. Finally 5 potential lead compounds, identified in the above process, were evaluated for their inhibitory activities. These studies resulted in the identification of two compounds with potent inhibition of 5-LOX activity with IC50 of 14 μM and 35 μM, respectively. These studies thus validate the pharmacophore model generated and suggest the usefulness of the model in screening of various small molecule libraries and identification of potential lead compounds for 5-LOX inhibition.  相似文献   

9.
Sirtuins (class III histone deacetylase) are evolutionarily conserved NAD+-dependent enzymes that catalyze the deacetylation of acetyl-lysine residues of histones and other target proteins. Because of their associations in various pathophysiological conditions, the identification of small molecule modulators has been of significant interest. In the present study, virtual screening was carried out with NCI Diversity Set II using crystal structure of hSIRT2 (PDB ID: 1J8F) as a model for the docking procedure to find potential compounds, which were then subjected to experimental tests for their in vitro SIRT2 inhibitory activity. One of the 40 compounds tested, NSC671136 (IUPAC name: 6-Acetyl-4-oxo-1,3-diphenyl-2-thioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-5-yl 2,4-dichlorobenzoate) has structurally unique scaffold, showed strong inhibitory activity towards SIRT2 with IC50 of ~8.7 μM and to a lesser extent on SIRT1 activity. The reported compound is substantially potent compared to the published SIRT2 inhibitors and serves as an excellent base for future lead development.  相似文献   

10.
Cyclic nucleotide phosphodiesterase enzymes (PDEs) have functions in regulating the levels of intracellular second messengers, 3′, 5′-cyclic adenosine monophosphate (cAMP) and 3′, 5′-cyclic guanosine monophosphate (cGMP), via hydrolysis and decomposing mechanisms in cells. They take essential roles in modulating various cellular activities such as memory and smooth muscle functions. PDE type 5 (PDE5) inhibitors enhance the vasodilatory effects of cGMP in the corpus cavernosum and they are used to treat erectile dysfunction. Patch clamp experiments showed that the IC50 values of the human ether-à-go-go-related gene (hERG1) potassium (K) ion channel blocking affinity of PDE5 inhibitors sildenafil, vardenafil, and tadalafil as 33, 12, and 100 μM, respectively. hERG1 channel is responsible for the regulation of the action potential of human ventricular myocyte by contributing the rapid component of delayed rectifier K+ current (IKr) component of the cardiac action potential. In this work, interaction patterns and binding affinity predictions of selected PDE5 inhibitors against the hERG1 channel are studied. It is attempted to develop PDE5 inhibitor analogs with lower binding affinity to hERG1 ion channel while keeping their pharmacological activity against their principal target PDE5 using in silico methods. Based on detailed analyses of docking poses and predicted interaction energies, novel analogs of PDE5 inhibitors with lower predicted binding affinity to hERG1 channels without loosing their principal target activity were proposed. Moreover, molecular dynamics (MD) simulations and post-processing MD analyses (i.e. Molecular Mechanics/Generalized Born Surface Area calculations) were performed. Detailed analysis of molecular simulations helped us to better understand the PDE5 inhibitor–target binding interactions in the atomic level. Results of this study can be useful for designing of novel and safe PDE5 inhibitors with enhanced activity and other tailored properties.  相似文献   

11.
Effects of inhibitors of phosphodiesterases (PDE) on bursting activity, produced by d-amphetamine (d-AM) was studied in PPa4 neurons of the giant African snail Achatina fulica F. Action of the following PDE inhibitors was analyzed: vinpocetine (selective to PDE I), erythro-9-(2-hydroxi-3-nonyl) adenine (EHNA; selective to PDE 2), milrinone (selective to PDE 3), rolipram (selective to PDE 4), sildenafil citrate (Viagra@; selective to PDE 5), and caffeine, a non-selective phosphodiesterase inhibitor. Amphetamine at a low concentration (67.5 × 10?5 M) did not produce the bursting firing in the neurons; however, the convulsive activity appeared on addition to this solution of any if the PDE inhibitors except for sildenafil. Forskolin (an adenylyl cyclase activator, 10?4 M) also decreased the neuronal threshold to the d-AM action. The bursting activity produced by d-AM did not develop after a previous administration of the protein kinase A inhibitor KT-5720. The phospholipase C blocker U73122 had no effect on the bursting activity produced by d-AM. It is concluded that the neuronal convulsive activity induced by d-AM is associated with the phosphodiesterase activity.  相似文献   

12.
We describe the design, synthesis and evaluation of a series of N2,N4-diaminoquinazoline analogs as PDE5 inhibitors. Twenty compounds were prepared and these were assessed in terms of their PDE5 and PDE6 activity, ex-vivo vasodilation response, mammalian cytotoxicity and aqueous solubility. Molecular docking was used to determine the binding mode of the series and this was demonstrated to be consistent with the observed SAR. Compound 15 was the most active PDE5 inhibitor (IC50?=?0.072?±?0.008?µM) and exhibited 4.6-fold selectivity over PDE6. Ex-vivo assessment of 15 and 22 in a rat pulmonary artery vasodilation model demonstrated EC50s of 1.63?±?0.72?µM and 2.28?±?0.74?µM respectively.  相似文献   

13.
We report the discovery of a novel series of 2-(3-alkoxy-1-azetidinyl) quinolines as potent and selective PDE10A inhibitors. Structure–activity studies improved the solubility (pH 7.4) and maintained high PDE10A activity compared to initial lead compound 3, with select compounds demonstrating good oral bioavailability. X-ray crystallographic studies revealed two distinct binding modes to the catalytic site of the PDE10A enzyme. An ex vivo receptor occupancy assay in rats demonstrated that this series of compounds covered the target within the striatum.  相似文献   

14.
H Rosenberg  S Pohl 《Life sciences》1975,17(3):431-434
Rat liver membranes prepared by a modification of the procedure of Neville were exposed to clinical and toxic concentrations of the general anesthetic, halothane, for 10 minutes. Basal, glucagon (5 × 10−5M) and sodium fluoride (20 mM) stimulated adenylate cyclase activity was assayed. Clinical and toxic concentrations of halothane augmented basal adenylate cyclase activity. Glucagon and sodium fluoride stimulated adenylate cyclase activity was enhanced at greater than clinically useful halothane concentrations only. The study provides direct evidence that halothane stimulates adenylate cyclase, the extent of augmentation of enzyme activity is halothane concentration dependent, and modified by other drugs.  相似文献   

15.
The cardiac glycoside, ouabain, normally kills HeLa cells at concentrations of about 10−7 m or greater. By treating a population of HeLa cells with increasingly higher concentrations of the drug, a variant population was obtained of HeLa cells capable of growing in medium containing 10−4 M ouabain. Inhibition of volume regulation of cells subjected to hypotonic shock was used as a measure of inhibition of active transport of Na across the plasma membrane. In that way dose-response curves for the rapid effects of ouabain and other inhibitors of active Na transport were obtained with both the original, ouabain-sensitive (OS) and the variant, ouabain-resistant (OR) cells. Three other cardiac glycosides (digoxin, digitoxin and hellebrin) and two aglycones (digitoxigenin and strophanthidjn) were found to be equally as effective as ouabain in inhibiting volume regulation of the OS cells; the concentration which produced half-maximum inhibition, I(max/2), was about 6 × 10−7 M in each case. Similar inhibition of the OR population by ouabain was observed only when the concentration exceeded 10−4 m [I(max/2)∼2.5 × 10−4 m], and the other steroid compounds had no effect on the variant cells at the highest concentrations tested (∼2 × 10−5 m). OR and OS cells differed also in their sensitivities to the cardioactive erythrophleum alkaloid, coumingine; I(max/2) for OS and OR cells was 5 × 10−8 m and 6 × 10−7 M, respectively. These results, in addition to results of ouabain binding experiments and measurements of the rates of reversal of inhibition of volume regulation, suggest that a major reason for the differential sensitivities of the two phenotypes to these drugs is different affinities of their sodium pumps for inhibitors of active transport.  相似文献   

16.
The synthesis, preliminary evaluation and structure–activity relationship (SAR) of a series of 1-aryl-4-methyl[1,2,4]triazolo[4,3-a]quinoxalines as dual phosphodiesterase 2/phosphodiesterase 10 (PDE2/PDE10) inhibitors are described. From this investigation compound 31 was identified, showing good combined potency, acceptable brain uptake and high selectivity for both PDE2 and PDE10 enzymes. Compound 31 was subjected to a microdosing experiment in rats, showing preferential distribution in brain areas where both PDE2 and PDE10 are highly expressed. These promising results may drive the further development of highly potent combined PDE2/PDE10 inhibitors, or even of selective inhibitors of PDE2 and/or PDE10.  相似文献   

17.
A series of 5-imino-4-thioxo-2-imidazolidinone derivatives with different substituents at N1 and N3 was synthesized with high yield and excellent purity by the reaction of different N-arylcyanothioformamide derivatives with isocyanate derivatives. Treatment 5-imino-4-thioxo-2-imidazolidinone derivatives with acidic medium afforded 4-thioxoimidazolidin-2,5-dione derivatives. The structures of the obtained products were established based on spectroscopic IR, 1H NMR, 13C NMR, 1H, 1H-COSY, HSQC and elemental analyses. The anti-inflammatory activity of the synthesized compounds through the carrageenan-paw edema model as well as in vitro COX-1 and COX-2 inhibition assay were evaluated where most of the synthesized compounds showed significant anti-inflammatory activity. Mostly, all of our synthesized compounds have greater activity more than celecoxib toward both cyclooxygenase enzymes. All of the tested compounds (except one compound) exhibited IC50 valves for COX-2 ranged from 0.001 × 10−3 to 0.827 × 10−3 µM while the reference drug has IC50 40.0 × 10−3 µM. Furthermore, the analgesic activity of such compounds was also determined. Molecular modeling study was also conducted to rationalize the potential as anti-inflammatory agents of our synthesized compounds by predicting their binding modes, binding affinities and optimal orientation at the active site of the COX enzymes.  相似文献   

18.
The design, synthesis and structure activity relationship studies of a series of compounds from benzo[d]imidazo[5,1-b]thiazole scaffold as phosphodiesterase 10A (PDE10A) inhibitors are discussed. Several potent analogs with heteroaromatic substitutions (9ad) were identified. The anticipated binding mode of these analogs was confirmed by performing the in silico docking experiments. Later, the heteroaromatics were substituted with saturated heteroalkyl groups which provided a tool compound 9e with excellent PDE10A activity, PDE selectivity, CNS penetrability and with favorable pharmacokinetic profile in rats. Furthermore, the compound 9e was shown to be efficacious in the MK-801 induced psychosis model and in the CAR model of psychosis.  相似文献   

19.
We obtained considerable evidence in earlier work that inhibition of nitrification begins during old-field succession and increases to a maximum in the climax (Rice and Pancholy, 1972, 1973). Moreover, we found that tannins and tannin derivatives appear to be important inhibitors of nitrification. In the present project, other potential phenolic inhibitors of nitrification were identified in acetone extracts of entire plants of most herbaceous species and leaves of tree species important in an intermediate stage of succession and the climax in three vegetation types in Oklahoma. Attempts were made also to identify potential inhibitors in acetone extracts of soil from the top 15 cm of the oak-pine climax. Seventeen potential inhibitors were identified from the eleven important species of plants surveyed. These were mostly phenolic acids and flavonoids, but one coumarin compound, scopolin, was found in high amounts in several species. The potential inhibitors were most common in green tops or green leaves, but roots, dead tops (of previous year), and dead leaves had high amounts of some compounds. Caffeic and ferulic acids were prominent in dead leaves or dead tops, and one flavonoid, myricetin, occurred in sizeable amounts in dead tops of Sorghastrum nutans. The aglycones of most of the compounds were tested against nitrification in soil suspensions, and all completely inhibited oxidation of NH+4 to NO2 by Nitrosomonas at concentrations as low as 10−6 to 10−8 M. Oxidation of NO2 to NO3 by Nitrobacter, however, was affected much less severely by these inhibitors. The greater resistance of Nitrobacter is not significant biologically because inhibition of the first step carried out by Nitrosomonas effectively inhibits the entire process of nitrification. The 3-glucoside of quercetin, isoquercitrin, inhibited the activity of Nitrosomonas completely at the same concentration as quercetin. We found a compound in large quantities in the oak-pine climax soil which appeared in all tests to be a flavonoid aglycone, but we were never able to identify it to our satisfaction. This substance was extremely inhibitory to germination and seedling growth of ‘Crimson Giant’ radish seeds. These have hard seed coats and germinate very rapidly so most inhibitors do not affect their germination at all. It is likely that some, if not all, of the nitrification inhibitors identified may be important in inhibition of nitrification in the later stages of succession and in the climax along with the tannins.  相似文献   

20.
The present study illustrates the design and synthesis of new series of 3-trifluoromethylpyrazole tethered chalcone-pyrrole and pyrazoline-pyrrole derivatives. All compounds were further screened for in vitro cytostatic activities on full NCI 60 cancer cell lines at National Cancer Institute, USA. Compounds (2E)-3-(1H-pyrrol-2-yl)-1-{4-[3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl}prop-2-en-1-one ( 5a ) and (2E)-1-{3-methyl-4-[3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-3-(1H-pyrrol-2-yl)prop-2-en-1-one ( 5c ) displayed significant antiproliferative activity (Growth Percentage: −77.10 and −92.13, respectively at 10 μM concentration) against the UO-31 cell lines from renal cancer and were further selected for assay at 10-fold dilutions of five different concentrations (10−4 to 10−8 M). Both compounds 5a and 5c exhibited promising antiproliferative activity (GI50: 1.36 to 0.27 μM) against leukemia cancer cell lines HL-60 and RPMI-8226, colon cancer cell lines KM-12; breast cancer cell lines BT-549. Moreover, both compounds 5a and 5c were found to be non-cytotoxic (LC50>100) against HL-60, RPMI-8226, and KM-12 cell lines. Remarkably, GI50 values of compounds 5a and 5c were identified as more promising than sunitinib against most cancer cell lines. In silico study of compounds 5a and 5c exemplified the desired ADME properties for drug-likeness as well as tighter interactions with VEGFR-2. Hence, compounds 5a and 5c would be good cytotoxic agents after further clinical study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号