首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P-Glycoprotein (P-gp) is an efflux transporter which is up-regulated at the blood-brain barrier in both morphine- and oxycodone-tolerant rats. Numerous studies have shown that many clinically employed opioid analgesics are substrates for P-gp, suggesting that up-regulation of P-gp may contribute to the development of central tolerance to opioids. The studies herein focus on the development of SAR for P-gp substrate activity in the meperidine series of compounds, and show that a meperidine analog of greater potency, N-phenylbutyl-N-normeperidine, has low activity as a P-gp substrate and has the potential to be utilized as a tool to study the contribution of P-gp to the development of central tolerance to opioids.  相似文献   

2.
The human multidrug resistance transporter P-glycoprotein (P-gp) prevents the entry of compounds into the brain by an active efflux mechanism at the blood-brain barrier (BBB). Treatment of neurodegenerative diseases, therefore, has become a challenge and the development of new reversible inhibitors of P-gp is pertinent to overcome this problem. We report the design and synthesis of a crosslinked agent based on the Alzheimer’s disease treatment galantamine (Gal-2) that inhibits P-gp-mediated efflux from cultured cells. Gal-2 was found to inhibit the efflux of the fluorescent P-gp substrate rhodamine 123 in cancer cells that over-express P-gp with an IC50 value of approximately 0.6 μM. In addition, Gal-2 was found to inhibit the efflux of therapeutic substrates of P-gp, such as doxorubicin, daunomycin and verapamil with IC50 values ranging from 0.3 to 1.6 μM. Through competition experiments, it was determined that Gal-2 modulates P-gp mediated efflux by competing for the substrate binding sites. These findings support a potential role of agents, such as Gal-2, as inhibitors of P-gp at the BBB to augment treatment of neurodegenerative diseases.  相似文献   

3.
In this study, a new series of heterodimers was synthesized. These derivatives are N,N-bis(alkanol)amine aryl esters or N,N-bis(ethoxyethanol)amine aryl esters carrying a methoxylated aryl residue combined with a flavone or chromone moiety. The new compounds were studied to evaluate their P-gp modulating activity on a multidrug-resistant leukemia cell line. Some of the new compounds show a good MDR reversing activity; interestingly this new series of compounds does not comply with the structure-activity relationships (SAR) outlined by previously synthesized analogs carrying different aromatic moieties. In the case of the compounds described in this paper, activity is linked to different features, in particular the characteristics of the spacer, which seem to be critical for the interaction with the pump. This fact indicates that the presence of a flavone or chromone residue influences the SAR of these series of products, and that flexible molecules can find different productive binding modes with the P-gp recognition site. These results support the synthesis of new compounds that might be useful leads for the development of drugs to control P-gp-dependent MDR.  相似文献   

4.
A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50 >100 μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors.  相似文献   

5.
Numerous studies have shown that many clinically employed opioid analgesics are substrates for P-glycoprotein (P-gp), suggesting that up-regulation of P-gp may contribute to the development of central tolerance to opioids. The studies herein focus on the development of SAR for P-gp substrate activity in the meperidine series of opioids. Addition of a 3-OH to meperidine and the ketone analog of meperidine yielding bemidone and ketobemidone, respectively, significantly increased P-gp substrate affinity. The results of this study have implications in the development of novel analgesics to be utilized as tools to study the contribution of P-gp on the development of central tolerance to opioids.  相似文献   

6.
Multidrug resistance (MDR) is the major obstacle for cancer chemotherapy. MDR is a multifactorial phenomenon that can result from several mechanisms, including an increased drug efflux, due to overexpression of P-glycoprotein (P-gp) that transports anticancer drugs out of the cells. Thus, the role of this transporter has made it a therapeutic target and the development of P-gp modulators considered among the most realistic approaches for overcoming P-gp-mediated MDR. Many other strategies have been proposed. One of them is the identification of compounds that selectively kill multidrug resistant cells. In our search for MDR modulators from plants, the P-gp inhibition ability of a large number of compounds on resistant cancer cells was evaluated. These compounds, presented in this review, comprise mainly diterpenes, triterpenes and phenolic derivatives. The most relevant results were obtained from two sets of compounds: macrocyclic diterpenes with the jatrophane and lathyrane scaffold, and triterpenes of the cucurbitane-type isolated from Euphorbia species and Momordica balsamina L., respectively. Additionally, some of those macrocyclic diterpenes, and ent-abietane diterpenic lactones, also isolated from Euphorbia species, were found to be selectively toxic to drug-resistant phenotypes.  相似文献   

7.
New insights into the P-glycoprotein-mediated effluxes of rhodamines.   总被引:2,自引:0,他引:2  
Multidrug resistance (MDR) in tumour cells is often caused by the overexpression of the plasma drug transporter P-glycoprotein (P-gp). This protein is an active efflux pump for chemotherapeutic drugs, natural products and hydrophobic peptides. Despite the advances of recent years, we still have an unclear view of the molecular mechanism by which P-gp transports such a wide diversity of compounds across the membrane. Measurement of the kinetic characteristics of substrate transport is a powerful approach to enhancing our understanding of their function and mechanism. The aim of the present study was to further characterize the transport of several rhodamine analogues, either positively charged or zwitterionic. We took advantage of the intrinsic fluorescence of rhodamines and performed a flow-cytometric analysis of dye accumulation in the wild-type drug sensitive K562 that do not express P-gp and its MDR subline that display high levels of MDR. The measurements were made in real time using intact cells. The kinetic parameter, ka = VM/km, which is a measure of the efficiency of the P-gp-mediated efflux of a substrate was similar for almost all the rhodamine analogues tested. In addition these values were compared with those determined previously for the P-gp-mediated efflux of anthracycline. Our conclusion is that the compounds of these two classes of molecules, anthracyclines and rhodamines, are substrates of P-gp and that their pumping rates at limiting low substrate concentration are similar. The findings presented here are the first to show quantitative information about the kinetic parameters for P-gp-mediated efflux of rhodamine analogues in intact cells.  相似文献   

8.
9.
P-glycoprotein (P-gp) is an efflux transporter that regulates bioavailability of orally administered drugs at the intestinal epithelium. To develop an in vitro experimental model that mimics P-gp-mediated intestinal drug transport in vivo, we employed normal intestinal epithelium three-dimensionally cultured. Physiological expression of P-gp mRNA and the expression of its protein at the apical membrane were observed in the small intestinal epithelium grown as cystic organoids. Rhodamine123 (Rh123), a substrate for P-gp, was actively transported in the basoapical direction and accumulated in the luminal space, while the epithelial integrity was kept intact. Furthermore, we were able to monitor the whole process of Rh123 transport and its inhibition by verapamil in real-time, from which kinetic parameters for Rh123 transport could be estimated by a mathematical modeling. The method here described to evaluate the dynamics of P-gp-mediated transport in primary intestinal epithelial cells would be instrumental in investigating the physiological function of P-gp and its inhibitors/inducers in vitro.  相似文献   

10.
In vitro P-glycoprotein affinity for atypical and conventional antipsychotics   总被引:11,自引:0,他引:11  
The transmembrane transporter P-glycoprotein (P-gp) is an ATP-dependent efflux pump for a wide range of drugs. P-gp potentially limits access to brain tissue of psychoactive substrates, but little is known about its specificity for antipsychotics. The objective of this study was to assess the affinity of some atypical antipsychotic drugs in vitro for P-gp as indicative of their potential as P-gp substrates in vivo. The activity of P-gp towards four atypical and two conventional antipsychotics and a proven substrate, verapamil, was examined by their P-gp ATPase activity, a putative measure of P-gp affinity. The Michaelis-Menten equation was fitted to the data. The rank order of the ratio V(max) / K(m) was: verapamil (2.6) > quetiapine (1.7) > risperidone (1.4) > olanzapine (0.8) > chlorpromzaine (0.7) > haloperidol (0.3) = clozapine (0.3). The atypical antipsychotics quetiapine and risperidone were relatively good P-gp substrates, although their affinities were not as high as verapamil. Olanzapine showed intermediate affinity and clozapine showed the least affinity of the drugs studied. These results suggest that P-gp is likely to influence the access to the brain of all of the atypical antipsychotics studied to various degrees. In vivo studies are needed to confirm these findings.  相似文献   

11.
12.
P-glycoprotein (P-gp), encoded by the MDR1 gene, is a plasma membrane transporter which effluxes a large number of structurally nonrelated hydrophobic compounds. The molecular basis of the broad substrate recognition of P-gp is not well understood. Despite the 78% amino acid sequence identity of the MDR1 and MDR2 transporter, MDR2, which has been identified as a phosphatidylcholine transporter, does not transport most MDR1 substrates. The structural and functional differences between MDR1 and MDR2 provide an opportunity to identify the residues essential for the broad substrate spectrum of MDR1. Using an approach involving exchanging homologous segments of MDR1 and MDR2 and site-directed mutagenesis, we have demonstrated that MDR1 residues Q330, V331, and L332 in transmembrane domain 6 are sufficient to allow an MDR2 backbone in the N-terminal half of P-gp to transport several MDR1 substrates, including bisantrene, colchicine, vinblastine, and rhodamine-123. These studies help define some residues important for multidrug transport and indicate the close functional relationship between the multidrug transporter (MDR1) and phosphatidylcholine flippase (MDR2).  相似文献   

13.
As a continuation of previous research on a new series of potent and efficacious P-gp-dependent multidrug resistant (MDR) reversers with a N,N-bis(cyclohexanol)amine scaffold, we have designed and synthesized several analogs by modulation of the two aromatic moieties linked through ester functions to the N,N-bis(cyclohexanol)amine, aiming to optimize activity and to extend structure–activity relationships (SAR) within the series. This scaffold, when esterified with two different aromatic carboxylic acids, gives origin to four geometric isomers (cis/trans, trans/trans, cis/cis and trans/cis).The new compounds were tested on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay. Most of them resulted in being potent modulators of the extrusion pump P-gp, showing potency values ([I]0.5) in the submicromolar and nanomolar range. Of these, compounds 2b, 2c, 3d, 5ad and 6d, showed excellent efficacy with a αmax close to 1. Selected compounds (2d, 3a, 3b, 5ad) were further studied to evaluate their doxorubicin cytotoxicity potentiation (RF) on doxorubicin-resistant erythroleukemia K562 cells and were found able to enhance significantly doxorubicin cytotoxicity on K562/DOX cells.The results of both pirarubicin uptake and the cytotoxicity assay, indicate that the new compounds of the series are potent P-gp-mediated MDR reversers. They present a structure with a mix of flexible and rigid moieties, a property that seems critical to allow the molecules to choose the most productive of the several binding modes possible in the transporter recognition site.In particular, compounds 5c and 5d, similar to the already reported analogous isomers 1c and 1d,29 are potent and efficacious modulators of P-gp-dependent MDR and may be promising leads for the development of MDR-reversal drugs.  相似文献   

14.
The multidrug resistant (MDR) tumor phenotype, characterized by a decreased cellular drug accumulation is achieved by ATP-dependent extrusions of drugs from cells by P-glycoprotein (P-gp) and/or by multidrug resistance protein (MRP1). Despite the huge amount of research that has been performed on the mechanisms of P-gp-mediated efflux of drug, it is not yet known what the molecular parameters are required for a molecule to be recognized and pumped out by P-gp. Anthracyclines are weak bases and, depending on the pH, can exist either in the neutral or in the positively charged form. The aim of the work reported here was to determine which molecular form is actively pumped out by P-gp (the neutral form, the protonated form, or both), and if both, the relative efficiencies of pumping. We used spectrofluorometric methods to determine the efflux of anthracyclines in K562/Adr cells, at different intracellular and extracellular pH levels. Using 3'-deamino, 3'-hydroxyl doxorubicin (OH-DOX), which is permanently neutral, we first verified that our methodologies were accurate and that the P-gp-mediated efflux of OH-DOX would not depend on the pH being in the range 6.6--8.4. The P-gp-mediated efflux of daunorubicin (DNR) and 3'-hydroxy-4-amino (WP608) was determined at different pH values. These two drugs were chosen because: (a) the lipophilicity of the neutral forms of these two molecules is so similar that any difference in the P-gp-mediated efflux cannot be assigned to lipohilicity variation, and (b) their pKa values are different (8.4 and 7.7 for DNR and WP608, respectively), which makes it easy to obtain a large variation in the proportions of the neutral and positively charged forms. Our data show that both forms are recognized by P-gp but the neutral form is pumped about three times more efficiently than the charged form. This is corroborated by results showing the active efflux (checked at pH(i) 7.3 only) of five other anthracycline containing a basic center. We interpret these data to mean that: (a) the positive charge of anthracycline is not a necessary requirement for P-gp recognition, but that (b) the presence of a protonable basic nitrogen facilitates the processing of these compounds by MDR efflux system.  相似文献   

15.
Cytochalasins are microfilament-active mould metabolites, widely utilized to study the involvement of the actin cytoskeleton in cellular processes as well as in genotoxicity and cell kinetic research. In this study we have investigated whether multidrug-resistance phenotypes, caused by overexpression of the ATP-binding-cassette transporter proteins P-glycoprotein (P-gp) or multidrug-resistance-associated protein (MRP), influence the microfilament-depolymerizing effect of cytochalasins. Using four well-characterized multidrug-resistance cell models, we have shown that both the microfilament-disrupting (phalloidine staining) and the cytotoxic (MTT-assay) activity of cytochalasins are reduced in parallel with increased P-gp expression and restorable by P-gp-modulating agents. This also applied to the cytochalasin D-mediated induction of polykaryons (microscopic evaluation) which arise as a consequence of impaired cytokinesis but unaffected karyokinesis. The reduced cellular activity of cytochalasins in P-gp-positive cell lines was correlated with decreased intracellular accumulation ([3H]cytochalasin B accumulation) which was also restorable by P-gp modulators. Moreover, the dose-dependent inhibition of P-gp photoaffinity labeling ([3H]azidopine) suggested cytochalasins as P-gp-binding agents. In contrast, MRP overexpression had no effect on either cytochalasin microfilament activity or cytotoxicity. In conclusion, data indicate that the microfilament-destructive effects of cytochalasins are impaired due to a reduction of the intracellular cytochalasin accumulation by P-gp but not by MRP. Results are discussed with regard to P-gp as a resistance factor when cytochalasins are utilized to study microfilament dynamics, cell cycle kinetics or chromosomal damage. Moreover, the polykaryon-inducing activity of cytochalasin D is suggested as a specific indicator for a P-gp-mediated multidrug-resistance phenotype and the reversing potency of chemosensitizers.  相似文献   

16.
BackgroundA major problem of cancer treatment is the development of multidrug resistance (MDR) to chemotherapy. MDR is caused by different mechanisms such as the expression of the ABC-transporters P-glycoprotein (P-gp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). These transporters efflux xenobiotic toxins, including chemotherapeutics, and they were found to be overexpressed in different cancer types.PurposeIdentification of novel molecules that overcome MDR by targeting ABC-transporters.MethodsResazurin reduction assay was used for cytotoxicity test. AutoDock 4.2. was used for molecular docking. The function of P-gp and BCRP was tested using a doxorubicin uptake assay and an ATPase assay. ROS generation was detected using flow cytometry for the measurement of H2DCFH-DA fluorescence. Annexin/PI staining was applied for the detection of apoptosis. Bioinformatic analyses were performed using LigandScout 3.12. software and DataWarrior software.ResultsIn our search for new molecules that selectively act against resistant phenotypes, we identified isopetasin and S-isopetasin, which are bioactive natural products from Petasites formosanus. They exerted collateral sensitivity towards leukemia cells with high P-gp expression in CEM/ADR5000 cells, compared to sensitive wild-type CCRF-CEM leukemia cells. Also, they revealed considerable activity towards breast cancer cells overexpressing breast cancer resistance protein, MDA-MB-231-BCRP clone 23. This motivated us to investigate whether the function of P-gp was inhibited. In-silico results showed the compounds bound with high affinity and interacted with key amino acid residues in P-gp . Then, we found that the two compounds increased doxorubicin accumulation in P-gp overexpressing CEM/ADR5000 by three-fold compared to cells without inhibitor. P-gp-mediated drug efflux was ATP-dependent. Isopetasin and S-isopetasin increased the ATPase activity of human P-gp in a comparable fashion as verapamil used as control P-gp inhibitor. As isopetasin and S-isopetasin exerted dual roles, first as cytotoxic compounds and then as P-gp inhibitors, we suggested that their P-gp inhibition is part of a larger complex of mechanisms to induce cell death in cancer patients. P-gp dysfunction induces mitochondrial stress to generate ATP. Upon continuing stress by P-gp inhibition, the mitochondria generate reactive oxygen species (ROS). Initially established for verapamil, this theory was validated in the present study for isopetasin and S-isopetasin, as treatment with the two candidates increased ROS levels in CEM/ADR5000 cells followed by apoptosis.ConclusionOur study highlights the importance of isopetasin and S-isopetasin as novel ROS-generating and apoptosis-inducing P-gp inhibitors.  相似文献   

17.
The observation that 17-cyclopropylmethylmorphinan derivatives without the 4,5-epoxy ring showed more κ selectivity than those with a 4,5-epoxy ring led us to develop a working hypothesis: the position of the plane composed of the A and B rings would influence the opioid receptor type selectivity and that the decrease in the torsion angle C11-C12-C13-C14 could improve the κ selectivity. Consistent with our hypothesis, KNT-42 with an N-cyclopropylmethyl propellane structure, whose A and B rings were fixed in a torsion angle of approximately 0°, showed κ selective agonist activity.  相似文献   

18.
We recently reported alkoxyl biphenyl derivatives bearing dibenzo[c,e]azepine scaffold as novel P-glycoprotein (P-gp, ABCB1) inhibitors. In this study, their ability to reverse breast cancer resistance protein (BCRP, ABCG2)-mediated multidrug resistance was tested in HEK293/BCRP cells which was BCRP-transfected stable HEK293 cells. It was observed that compounds 4d, 4h, 4i increased mitoxantrone accumulation in HEK293/BCRP cells via inhibiting BCRP efflux function. Notably, the inhibitory activity of 4i was comparable to that of the classical BCRP inhibitor Ko143 at an equimolar concentration. Interestingly, 4i had little inhibitory effect on multidrug resistance-associated protein 1 (MRP1, ABCC1), another drug efflux transporter. These results, together with the previous findings, suggest that 4i may be a dual inhibitor of P-gp and BCRP to warrant further investigation.  相似文献   

19.
The synthesis and biological evaluation of new potent opioid receptor-like 1 (ORL1) antagonists are presented. Conversion of the thioether linkage of the prototype [It is reported prior to this communication as a consecutive series.: Kobayashi, K.; Kato, T.; Yamamoto, I.; Shimizu, A.; Mizutani, S.; Asai, M.; Kawamoto, H.; Ito, S.; Yoshizumi, T.; Hirayama, M.; Ozaki, S.; Ohta, H.; Okamoto, O. Bioorg. Med. Chem. Lett., in press] to the carbonyl linker effectively reduces susceptibility to P-glycoprotein (P-gp) efflux. This finding led to the identification of 2-cyclohexylcarbonylbenzimizole analogue 7c, which exhibited potent ORL1 activity, excellent selectivity over other receptors and ion channels, and poor susceptibility to P-gp. Compound 7c also showed satisfactory pharmacokinetic profiles and brain penetrability in laboratory animals. Furthermore, 7c showed good in vivo antagonism. Hence, 7c was selected as a clinical candidate for a brain-penetrable ORL1 antagonist.  相似文献   

20.
《Phytomedicine》2014,21(1):47-61
P-glycoprotein (P-gp or MDR1) is an ATP-binding cassette (ABC) transporter. It is involved in the efflux of several anticancer drugs, which leads to chemotherapy failure and multidrug resistance (MDR) in cancer cells. Representative secondary metabolites (SM) including phenolics (EGCG and thymol), terpenoids (menthol, aromadendrene, β-sitosterol-O-glucoside, and β-carotene), and alkaloids (glaucine, harmine, and sanguinarine) were evaluated as potential P-gp inhibitors (transporter activity and expression level) in P-gp expressing Caco-2 and CEM/ADR5000 cancer cell lines. Selected SM increased the accumulation of the rhodamine 123 (Rho123) and calcein-AM (CAM) in a dose dependent manner in Caco-2 cells, indicating that they act as competitive inhibitors of P-gp. Non-toxic concentrations of β-carotene (40 μM) and sanguinarine (1 μM) significantly inhibited Rho123 and CAM efflux in CEM/ADR5000 cells by 222.42% and 259.25% and by 244.02% and 290.16%, respectively relative to verapamil (100%). Combination of the saponin digitonin (5 μM), which also inhibits P-gp, with SM significantly enhanced the inhibition of P-gp activity. The results were correlated with the data obtained from a quantitative analysis of MDR1 expression. Both compounds significantly decreased mRNA levels of the MDR1 gene to 48% (p < 0.01) and 46% (p < 0.01) in Caco-2, and to 61% (p < 0.05) and 1% (p < 0.001) in CEM/ADR5000 cells, respectively as compared to the untreated control (100%). Combinations of digitonin with SM resulted in a significant down-regulation of MDR1. Our findings provide evidence that the selected SM interfere directly and/or indirectly with P-gp function. Combinations of different P-gp substrates, such as digitonin alone and together with the set of SM, can mediate MDR reversal in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号