首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Botulinum neurotoxins (BoNTs) are the most toxic proteins currently known. Current treatments for botulinum poisoning are all protein based with a limited window of opportunity. Inhibition of the BoNT light chain protease (LC) has emerged as a new therapeutic strategy for the treatment of botulism as it may provide an effective post-exposure remedy. As such, a small library of 40 betulin derivatives was synthesized and screened against the light chain of BoNT serotype A (LC/A); five positive hits (IC50 <100 μM) were uncovered. Detailed evaluation of inhibition mechanism of three most active compounds revealed a competitive model, with sub-micromolar Ki value for the best inhibitor (7). Unfortunately, an in vitro cell-based assay did not show any protection of rat cerebellar neurons against BoNT/A intoxication by 7.  相似文献   

2.
Our initial discovery of 8-hydroxyquinoline inhibitors of BoNT/A and separation/testing of enantiomers of one of the more active leads indicated considerable flexibility in the binding site. We designed a limited study to investigate this flexibility and probe structure-activity relationships; utilizing the Betti reaction, a 36 compound matrix of quinolinol BoNT/A LC inhibitors was developed using three 8-hydroxyquinolines, three heteroaromatic amines, and four substituted benzaldehydes. This study has revealed some of the most effective quinolinol-based BoNT/A inhibitors to date, with 7 compounds displaying IC50 values ?1 μM and 11 effective at ?2 μM in an ex vivo assay.  相似文献   

3.
The botulinum neurotoxin serotype A light chain (BoNT/A LC) protease is the catalytic component responsible for the neuroparalysis that is characteristic of the disease state botulism. Three related peptide-like molecules (PLMs) were designed using previous information from co-crystal structures, synthesized, and assayed for in vitro inhibition against BoNT/A LC. Our results indicate these PLMS are competitive inhibitors of the BoNT/A LC protease and their Ki values are in the nM-range. A co-crystal structure for one of these inhibitors was determined and reveals that the PLM, in accord with the goals of our design strategy, simultaneously involves both ionic interactions via its P1 residue and hydrophobic contacts by means of an aromatic group in the P2′ position. The PLM adopts a helical conformation similar to previously determined co-crystal structures of PLMs, although there are also major differences to these other structures such as contacts with specific BoNT/A LC residues. Our structure further demonstrates the remarkable plasticity of the substrate binding cleft of the BoNT/A LC protease and provides a paradigm for iterative structure-based design and development of BoNT/A LC inhibitors.  相似文献   

4.
The paralytic disease botulism is caused by botulinum neurotoxins (BoNT), multi-domain proteins containing a zinc endopeptidase that cleaves the cognate SNARE protein, thereby blocking acetylcholine neurotransmitter release. Antitoxins currently used to treat botulism neutralize circulating BoNT but cannot enter, bind to or neutralize BoNT that has already entered the neuron. The light chain endopeptidase domain (LC) of BoNT serotype A (BoNT/A) was targeted for generation of monoclonal antibodies (mAbs) that could reverse paralysis resulting from intoxication by BoNT/A. Single-chain variable fragment (scFv) libraries from immunized humans and mice were displayed on the surface of yeast, and 19 BoNT/A LC-specific mAbs were isolated by using fluorescence-activated cell sorting (FACS). Affinities of the mAbs for BoNT/A LC ranged from a KD value of 9.0×10−11 M to 3.53×10−8 M (mean KD 5.38×10−9 M and median KD 1.53×10−9 M), as determined by flow cytometry analysis. Eleven mAbs inhibited BoNT/A LC catalytic activity with IC50 values ranging from 8.3 ~73×10−9 M. The fine epitopes of selected mAbs were also mapped by alanine-scanning mutagenesis, revealing that the inhibitory mAbs bound the α-exosite region remote from the BoNT/A LC catalytic center. The results provide mAbs that could prove useful for intracellular reversal of paralysis post-intoxication and further define epitopes that could be targeted by small molecule inhibitors.  相似文献   

5.
The botulinum neurotoxin (BoNT) is the most lethal protein known to man causing the deadly disease botulinum. The neurotoxin, composed of a heavy (HC) and light (LC) chain, work in concert to cause muscle paralysis. A therapeutic strategy to treat individuals infected with the neurotoxin is inhibiting the catalytic activity of the BoNT LC. We report the synthesis, inhibition study and computational docking analysis of novel small molecule BoNT/A LC inhibitors. A structure activity relationship study resulted in the discovery of d-isoleucine functionalized with a hydroxamic acid on the C-terminal and a biphenyl with chlorine at C- 2 connected by a sulfonamide linker at the N-terminus. This compound has a measured IC50 of 0.587 µM for the BoNT/A LC. Computational docking analysis indicates the sulfonamide linker adopts a geometry that is advantageous for binding to the BoNT LC active site. In addition, Arg363 is predicted to be involved in key binding interactions with the scaffold in this study.  相似文献   

6.
Botulinum neurotoxin (BoNT) is a potent and potentially lethal bacterial toxin that binds to host motor neurons, is internalized into the cell, and cleaves intracellular proteins that are essential for neurotransmitter release. BoNT is comprised of a heavy chain (HC), which mediates host cell binding and internalization, and a light chain (LC), which cleaves intracellular host proteins essential for acetylcholine release. While therapies that inhibit toxin binding/internalization have a small time window of administration, compounds that target intracellular LC activity have a much larger time window of administrations, particularly relevant given the extremely long half-life of the toxin. In recent years, small molecules have been heavily analyzed as potential LC inhibitors based on their increased cellular permeability relative to larger therapeutics (peptides, aptamers, etc.). Lead identification often involves high-throughput screening (HTS), where large libraries of small molecules are screened based on their ability to modulate therapeutic target function. Here we describe a FRET-based assay with a commercial BoNT/A LC substrate and recombinant LC that can be automated for HTS of potential BoNT inhibitors. Moreover, we describe a manual technique that can be used for follow-up secondary screening, or for comparing the potency of several candidate compounds.  相似文献   

7.
This current study described the design and synthesis of a series of derivatives based on a natural pyranoisaflavone, which was obtained from the seeds of Millettia pachycarpa and displayed attractive BChE inhibition and high selectivity in our previous study. The inhibitory potential of all derivatives against two cholinesterases was evaluated. Only a few compounds demonstrated AChE inhibitory activity at the tested concentrations, while 26 compounds showed significant inhibition on BChE (the IC50 values varied from 9.34 μM to 0.093 μM), most of them presented promising selectivity to ward BChE. Prediction of ADME properties for 7 most active compounds was performed. Among them, 9g (IC50 = 222 nM) and 9h (IC50 = 93 nM) were found to be the most potent BChE inhibitors with excellent selectivity over AChE (SI ratio = 1339 and 836, respectively). The kinetic analysis demonstrated both of them acted as mixed-type BChE inhibitors, while the molecular docking results indicated that they interacted with both residues in the catalytic active site. A cytotoxicity test on PC12 cells showed that both 9g and 9h had a therapeutic safety range similar to tacrine. Overall, the results indicate that 9h could be a good candidate of BChE inhibitors.  相似文献   

8.
Botulinum neurotoxins (BoNTs) are among the most lethal biological substances to have been weaponized and are listed as biodefense category A agents. Currently, no small molecule (non-peptidic) therapeutics exist to counter this threat; hence, identifying and developing compounds that inhibit BoNTs is a high priority. In the present study, a high-throughput assay was used to identify small molecules that inhibit the metalloprotease activity of BoNT serotype A light chain (BoNT/A LC). All inhibitors were further verified using a HPLC-based assay. Conformational analyses of these compounds, in conjunction with molecular docking studies, were used to predict structural features that contribute to inhibitor binding and potency. Based on these results, a common pharmacophore for BoNT/A LC inhibitors is proposed. This is the first study to report small molecules (non-peptidics) that inhibit BoNT/A LC metalloprotease activity in the low microM range.  相似文献   

9.
Bruton's Tyrosine Kinase (BTK) is a member of the TEC kinase family that is expressed in cells of hematopoietic lineage (e.g., in B cells, macrophages, monocytes, and mast cells). Small molecule covalent irreversible BTK inhibitor targeting Cys481 within the ATP-binding pocket, for example ibrutinib, has been applied in the treatment of B-cell malignancies. Starting from a fragment hit, we discovered a novel series of potent covalent irreversible BTK inhibitors that occupy selectivity pocket of the active site of the BTK kinase domain. Guided by X-ray structures and a fragment-based drug design (FBDD) approach, we generated molecules showing comparable cellular potency to ibrutinib and higher kinome selectivity against undesirable off-targets like EGFR.  相似文献   

10.
Botulinum neurotoxins (BoNTs) are the most lethal biotoxins known to mankind and are responsible for the neuroparalytic disease botulism. Current treatments for botulinum poisoning are all protein based and thus have a limited window of treatment opportunity. Inhibition of the BoNT light chain protease (LC) has emerged as a therapeutic strategy for the treatment of botulism as it may provide an effective post exposure remedy. Using a combination of crystallographic and modeling studies a series of hydroxamates derived from 1-adamantylacetohydroxamic acid (3a) were prepared. From this group of compounds, an improved potency of about 17-fold was observed for two derivatives. Detailed mechanistic studies on these structures revealed a competitive inhibition model, with a Ki = 27 nM, which makes these compounds some of the most potent small molecule, non-peptidic BoNT/A LC inhibitors reported to date.  相似文献   

11.
The light chain of botulinum neurotoxin A (BoNT/A‐LC) is a Zn‐dependent protease that specifically cleaves SNAP25 of the SNARE complex, thereby impairing vesicle fusion and neurotransmitter release at neuromuscular junctions. The C‐terminus of SNAP25 (residues 141–206) retains full activity for BoNT/A‐LC‐catalyzed cleavage at P1‐P1' (Gln197‐Arg198). Using the structure of a complex between the C‐terminus of SNAP25 and BoNT/A‐LC as a model to design SNAP25‐derived pseudosubstrate inhibitors (SNAPIs) that prevent presentation of the scissile bond to the active site, we introduced multiple His residues to replace Ala‐Asn‐Gln‐Arg (residues 195–198) at the substrate cleavage site, with the intent to identify possible side‐chain interactions with the active site Zn. We also introduced multiple Gly residues between the P1‐P1' residues to explore the spatial tolerance within the active‐site cleft. Using a FRET substrate YsCsY, we compared a series of SNAPIs for inhibition of BoNT/A‐LC. Among the SNAPIs tested, several known cleavage‐resistant, single‐point mutants of SNAP25 were poor inhibitors, with most of the mutants losing binding affinity. Replacement with His at the active site did not improve inhibition over wildtype substrate. In contrast, Gly‐insertion mutants were not only resistant to cleavage, but also surprisingly showed enhanced affinity for BoNT/A‐LC. Two of the Gly‐insertion mutants exhibited 10‐fold lower IC50 values than the wildtype 66‐mer SNAP25 peptide. Our findings illustrate a scenario, where the induced fit between enzyme and bound pseudosubstrate fails to produce the strain and distortion required for catalysis to proceed.  相似文献   

12.
Glycogen synthase kinase 3 (GSK-3) has become known for its multifactorial involvement in the pathogenesis of Alzheimer’s disease. In this study, a benzothiazole- and benzimidazole set of 1-aryl-3-(4-methoxybenzyl)ureas were synthesised as proposed Cys199-targeted covalent inhibitors of GSK-3β, through the incorporation of an electrophilic warhead onto their ring scaffolds. The nitrile-substituted benzimidazolylurea 2b (IC50 = 0.086 ± 0.023 µM) and halomethylketone-substituted benzimidazolylurea 9b (IC50 = 0.13 ± 0.060 µM) displayed high GSK-3β inhibitory activity, in comparison to reference inhibitor AR-A014418 (1, IC50 = 0.072 ± 0.043) in our assay. The results suggest further investigation of 2b and 9b as potential covalent inhibitors of GSK-3β, since a targeted interaction might provide improved kinase-selectivity.  相似文献   

13.
Clostridium botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins for humans and a major biothreat agent. Despite intense chemical efforts over the past 10 years to develop inhibitors of its catalytic domain (catBoNT/A), highly potent and selective inhibitors are still lacking. Recently, small inhibitors were reported to covalently modify catBoNT/A by targeting Cys165, a residue located in the enzyme active site just above the catalytic zinc ion. However, no direct proof of Cys165 modification was reported, and the poor accessibility of this residue in the x-ray structure of catBoNT/A raises concerns about this proposal. To clarify this issue, the functional role of Cys165 was first assessed through a combination of site-directed mutagenesis and structural studies. These data suggested that Cys165 is more involved in enzyme catalysis rather than in structural property. Then by peptide mass fingerprinting and x-ray crystallography, we demonstrated that a small compound containing a sulfonyl group acts as inhibitor of catBoNT/A through covalent modification of Cys165. The crystal structure of this covalent complex offers a structural framework for developing more potent covalent inhibitors catBoNT/A. Other zinc metalloproteases can be founded in the protein database with a cysteine at a similar location, some expressed by major human pathogens; thus this work should find broader applications for developing covalent inhibitors.  相似文献   

14.
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) is a promising therapeutic target for the treatment of activated B cell-like diffuse large B cell lymphoma (ABC-DLBCL). Several research groups have reported on the development of Malt1 inhibitors and activity-based probes for in vitro and in situ monitoring and modulating Malt1 activity. In this paper, we report on two activity-based Malt1 probes (6 and 7) and a focused library of 19 new Malt1 inhibitors. Our peptide-based probe 6 labels Malt1 in an activity-based manner. In contrast, probe 7, derived from the known covalent inhibitor MI-2, labels both wild type and catalytically inactive Cys to Ala mutant Malt1, suggesting that MI-2 inhibits Malt1 by reacting with a nucleophilic residue other than the active site cysteine. Furthermore, two of our inhibitors (9, apparent IC50 3.0 μM, and 13, apparent IC50 2.1 μM) show good inhibitory activity against Malt1 and outperform MI-2 (apparent IC50 7.8 μM) in our competitive activity-based protein profiling assay.  相似文献   

15.
Bruton's tyrosine kinase (Btk) is a member of the Tec kinase family that is expressed in cells of hematopoietic lineage (e.g. B cells, macrophages, monocytes, and mast cells). Small molecule covalent irreversible Btk inhibitors targeting Cys481 within the ATP-binding pocket have been applied in the treatment of B-cell malignancies. Starting from a fragment, we discovered a novel series of potent covalent irreversible Btk inhibitors that bear N-linked groups occupying the solvent accessible pocket (SAP) of the active site of the Btk kinase domain. The hit molecules, however, displayed high P-gp mediated efflux ratio (ER) and poor A-B permeability in Caco-2 assay. By decreasing tPSA, installing steric hindrance and adjusting clogP, one top molecule 9 was discovered, which showed a 99% decrease in efflux ratio and a 90-fold increase in A-B permeability compared to hit molecule 1.  相似文献   

16.
The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.  相似文献   

17.
Botulinum neurotoxin type A (BoNT/A) is the etiological agent responsible for botulism, a disease characterized by peripheral neuromuscular blockade. BoNT/A is produced by Clostridium botulinum as a single chain protein that is activated by proteolytic cleavage to form a 50 kDa light chain (LC, 448 amino acids) and a disulfide bond-linked 100 kDa heavy chain (HC, 847 amino acids). Whilst HC comprises the receptor binding and translocation domains, LC is a Zn2+-endopeptidase that cleaves at a single glutaminyl-arginine bond corresponding to residues 197 and 198 at the C-terminus of SNAP25. Cleavage of SNAP25 uncouples the neural exocytosis docking/fusion machinery. LC/A (LC 1-448) and several C-terminal deletion proteins of LC/A were engineered and expressed as His-tagged fusion proteins in Escherichia coli. LC 1-448 was purified, but precipitated upon storage. Approximately 40% of LC 1-448 was a covalent dimer due to the formation of inter-chain disulfide bond formation at Cys430. Conversion of Cys430 to Ser abolished dimer formation of LC 1-448, but did not improve solubility. Three C-terminal deletion peptides were engineered; LC 1-425 and LC 1-418 were expressed and could be purified as soluble and stable proteins, whilst LC 1-398 was soluble, but not stable to storage. Kinetic studies showed that LC 1-448 and LC 1-425 efficiently cleaved GST-SNAP25 and the fluorescent substrate SNAPtide, while LC 1-418 catalyzed the cleavage of both the SNAP25 and the fluorescent substrate SNAPtide with a similar Km, but at a 10-fold slower kcat. Thus, regions within the C-terminus of LC/A contribute to solubility, stability, and catalysis.  相似文献   

18.
In this work, new derivatives of diarylimidazole-1,2,3-triazole 7a-p were designed, synthesized, and evaluated for their in vitro α-glucosidase inhibitory activity. All compounds showed potent inhibitory activity in the range of IC50 = 90.4–246.7 µM comparing with acarbose as the standard drug (IC50 = 750.0 µM). Among the synthesized compounds, compounds 7b, 7c, and 7e were approximately 8 times more potent than acarbose. The kinetic study of those compounds indicated that they acted as the competitive inhibitors of α-glucosidase. Molecular docking studies were also carried out for compounds 7b, 7c, and 7e using modeled α-glucosidase to find the interaction modes responsible for the desired inhibitory activity.  相似文献   

19.
In the present study, new (1,3,4-thiadiazol-2-yl)benzene-1,3-diol based compounds have been synthesized and their potential anticholinesterases properties have been investigated using the modified of Ellman’s spectrophotometric method. The compounds were obtained by the reaction of hydrazides or thiosemicarbazides with aryl-modified sulfinylbis[(2,4-dihydroxyphenyl)methanethione]s. Their chemical structures were elucidated by IR, 1H-NMR, 13C-NMR and EI-MS spectral data and elemental analyses. Most of the compounds acted as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors in vitro, with IC50 values ranging from >500 to 0.053 μM and from >500 to 0.105 μM, respectively. The most potent compound 9 (IC50 = 0.053 μM) proved to be selective toward AChE, exhibiting selectivity ratios versus BuChE of ca. 950. The kinetic studies showed that it is a mixed-type of AChE inhibitor. Another compound (2) was active against both enzymes with IC50 values in the low nM range. The structure-activity relationships (SARs) of the compounds under consideration were discussed.  相似文献   

20.
The category A agent, botulinum neurotoxin (BoNT), is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, we have identified three RNA aptamers through SELEX-process, which bind strongly to the light chain of type A BoNT (BoNT/A) and inhibit the endopeptidase activity, with IC50 in low nM range. Inhibition kinetic studies reveal low nM KI and non-competitive nature of their inhibition. Aptamers are unique group of molecules as therapeutics, and this is first report of their development as an antidote against botulism. These data on KI and IC50 strongly suggest that the aptamers have strong potential as antidotes that can reverse the symptom caused by BoNT/A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号