首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Tang F  Wang B  Li N  Wu Y  Jia J  Suo T  Chen Q  Liu YJ  Tang J 《PloS one》2011,6(9):e24367
Autophagy is an evolutionarily conserved catabolic process that allows recycling of cytoplasmic organelles, such as mitochondria, to offer a bioenergetically efficient pathway for cell survival. Considerable progress has been made in characterizing mitochondrial autophagy. However, the dedicated ubiquitin E3 ligases targeting mitochondria for autophagy have not been revealed. Here we show that human RNF185 is a mitochondrial ubiquitin E3 ligase that regulates selective mitochondrial autophagy in cultured cells. The two C-terminal transmembrane domains of human RNF185 mediate its localization to mitochondrial outer membrane. RNF185 stimulates LC3II accumulation and the formation of autophagolysosomes in human cell lines. We further identified the Bcl-2 family protein BNIP1 as one of the substrates for RNF185. Human BNIP1 colocalizes with RNF185 at mitochondria and is polyubiquitinated by RNF185 through K63-based ubiquitin linkage in vivo. The polyubiquitinated BNIP1 is capable of recruiting autophagy receptor p62, which simultaneously binds both ubiquitin and LC3 to link ubiquitination and autophagy. Our study might reveal a novel RNF185-mediated mechanism for modulating mitochondrial homeostasis through autophagy.  相似文献   

4.
《Autophagy》2013,9(9):1325-1332
Elimination of defective mitochondria is essential for the health of long-lived, postmitotic cells. To gain insight into this process, we examined programmed mitochondrial clearance in reticulocytes. BNIP3L is a mitochondrial outer membrane protein that is required for clearance. It has been suggested that BNIP3L functions by causing mitochondrial depolarization, activating autophagy, or engaging the autophagy machinery. Here we showed in mice that BNIP3L activity localizes to a small region in its cytoplasmic domain, the minimal essential region (MER). The MER is a novel sequence, which comprises three contiguous hydrophobic amino acid residues, and flanking charged residues. Mutation of the central leucine residue causes complete loss of BNIP3L activity, and prevents rescue of mitochondrial clearance. Structural bioinformatics analysis predicts that the BNIP3L cytoplasmic domain lacks stable tertiary structure, but that the MER forms an α-helix upon binding to another protein. These findings support an adaptor model of BNIP3L, centered on the MER.  相似文献   

5.
Hypoxia (lack of oxygen) is a physiological stress often associated with solid tumors. Hypoxia correlates with poor prognosis since hypoxic regions within tumors are considered apoptosisresistant. Autophagy (cellular "self digestion") has been associated with hypoxia during cardiac ischemia and metabolic stress as a survival mechanism. However, although autophagy is best characterized as a survival response, it can also function as a mechanism of programmed cell death. Our results show that autophagic cell death is induced by hypoxia in cancer cells with intact apoptotic machinery. We have analyzed two glioma cell lines (U87, U373), two breast cancer cell lines (MDA-MB-231, ZR75) and one embryonic cell line (HEK293) for cell death response in hypoxia (<1% O(2)). Under normoxic conditions, all five cell lines undergo etoposide-induced apoptosis whereas hypoxia fails to induce these apoptotic responses. All five cell lines induce an autophagic response and undergo cell death in hypoxia. Hypoxia-induced cell death was reduced upon treatment with the autophagy inhibitor 3-methyladenine, but not with the caspase inhibitor z-VAD-fmk. By knocking down the autophagy proteins Beclin-1 or ATG5, hypoxia-induced cell death was also reduced. The pro-cell death Bcl-2 family member BNIP3 (Bcl-2/adenovirus E1B 19kDainteracting protein 3) is upregulated during hypoxia and is known to induce autophagy and cell death. We found that BNIP3 overexpression induced autophagy, while expression of BNIP3 siRNA or a dominant-negative form of BNIP3 reduced hypoxia-induced autophagy. Taken together, these results suggest that prolonged hypoxia induces autophagic cell death in apoptosis-competent cells, through a mechanism involving BNIP3.  相似文献   

6.
Elimination of defective mitochondria is essential for the health of long-lived, postmitotic cells. To gain insight into this process, we examined programmed mitochondrial clearance in reticulocytes. BNIP3L is a mitochondrial outer membrane protein that is required for clearance. It has been suggested that BNIP3L functions by causing mitochondrial depolarization, activating autophagy, or engaging the autophagy machinery. Here we showed in mice that BNIP3L activity localizes to a small region in its cytoplasmic domain, the minimal essential region (MER). The MER is a novel sequence, which comprises three contiguous hydrophobic amino acid residues, and flanking charged residues. Mutation of the central leucine residue causes complete loss of BNIP3L activity, and prevents rescue of mitochondrial clearance. Structural bioinformatics analysis predicts that the BNIP3L cytoplasmic domain lacks stable tertiary structure, but that the MER forms an α-helix upon binding to another protein. These findings support an adaptor model of BNIP3L, centered on the MER.  相似文献   

7.
《Cellular signalling》2014,26(5):917-924
Plant lectins have been considered as possible anti-tumor drugs because of their property to induce autophagic cell death. Given that expression of membrane type-1 matrix metalloproteinase (MT1-MMP) has been found to regulate expression of the autophagy biomarker Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), we sought to investigate possible signaling interplay mechanisms between MT1-MMP and BNIP3 in Concanavalin-A (ConA) lectin-activated U87 glioblastoma cells. ConA induced acidic vacuole organelle formation as well as BNIP3 and MT1-MMP gene and protein expressions, whereas only BNIP3 expression was dose-dependently inhibited by the JAK2 tyrosine kinase inhibitor AG490 suggesting a requirement for some STAT-mediated signaling. Gene silencing of MT1-MMP and of STAT3 abrogated ConA-induced STAT3 phosphorylation and BNIP3 expression. Correlative analysis shows that STAT3 signaling events occur downstream from MT1-MMP induction. Overexpression of a full length MT1-MMP recombinant protein led to increased BNIP3 gene and protein expressions. The cytoplasmic domain of MT1-MMP was also found necessary for transducing STAT3 phosphorylation. Among JAK1, JAK2, JAK3, and TYK2, only JAK2 gene silencing abrogated ConA's effects on MT1-MMP and BNIP3 gene and protein expressions. Our study elucidates how MT1-MMP signals autophagy, a process which could contribute to the chemoresistance phenotype in brain cancer cells.  相似文献   

8.
9.
10.
Many apoptotic signaling pathways are directed to mitochondria, where they initiate the release of apoptogenic proteins and open the proposed mitochondrial permeability transition (PT) pore that ultimately results in the activation of the caspase proteases responsible for cell disassembly. BNIP3 (formerly NIP3) is a member of the Bcl-2 family that is expressed in mitochondria and induces apoptosis without a functional BH3 domain. We report that endogenous BNIP3 is loosely associated with mitochondrial membrane in normal tissue but fully integrates into the mitochondrial outer membrane with the N terminus in the cytoplasm and the C terminus in the membrane during induction of cell death. Surprisingly, BNIP3-mediated cell death is independent of Apaf-1, caspase activation, cytochrome c release, and nuclear translocation of apoptosis-inducing factor. However, cells transfected with BNIP3 exhibit early plasma membrane permeability, mitochondrial damage, extensive cytoplasmic vacuolation, and mitochondrial autophagy, yielding a morphotype that is typical of necrosis. These changes were accompanied by rapid and profound mitochondrial dysfunction characterized by opening of the mitochondrial PT pore, proton electrochemical gradient (Deltapsim) suppression, and increased reactive oxygen species production. The PT pore inhibitors cyclosporin A and bongkrekic acid blocked mitochondrial dysregulation and cell death. We propose that BNIP3 is a gene that mediates a necrosis-like cell death through PT pore opening and mitochondrial dysfunction.  相似文献   

11.
Tracy K  Macleod KF 《Autophagy》2007,3(6):616-619
Understanding the role of BNIP3 in the systemic response to hypoxia has been complicated by conflicting results that indicate on the one hand that BNIP3 promotes cell death, and other data, including our own that BNIP3 is not sufficient for cell death, but rather plays a critical role in hypoxia-induced autophagy. This work suggests that rather than promoting death, BNIP3 may actually allow survival either by preventing ATP depletion or by eliminating damaged mitochondria. However, the function of BNIP3 may be subverted under unusual conditions associated with acidosis that arise following extended periods of hypoxia and anaerobic glycolysis. Despite this novel insight into BNIP3 function, much remains to be done in terms of pinning down a molecular activity for BNIP3 that explains both its role in autophagy and how this may be subverted to induce cell death. As a target of the RB tumor suppressor, our work also places BNIP3 at the center of efforts to exploit autophagy to better treat human cancers in which tumor hypoxia is implicated as a progression factor.  相似文献   

12.
Leber’s hereditary optic neuropathy (LHON) is one of the most common mitochondrial diseases caused by point mutations in mitochondrial DNA (mtDNA). The majority of diagnosed LHON cases are caused by a point mutation at position 11,778 in the mitochondrial genome. LHON mainly affects young men in their 20s and 30s with usually poor visual prognosis. It remains unexplained why men are more likely to develop the disease and why only retinal ganglion cells are affected. In this study, a cell model was used for the first time to investigate the influence of testosterone on the cell death mechanism apoptosis and on an autophagy/mitophagy. Cells with m.11778G > A were found to be significantly more susceptible to nucleosome formation and effector caspase activation that serve as hallmarks of apoptotic cell death. Cells having this mutation expressed higher levels of mitophagic receptors BNIP3 and BNIP3L/Nix in a medium with testosterone. Moreover, cells having the mutation exhibited greater mitochondrial mass, which suggests these cells have a decreased cell survival. The observed decrease in cell survival was supported by the observed increase in apoptotic cell death. Autophagy was analyzed after inhibition with Bafilomycin A1 (Baf A1). The results indicate impairment in autophagy in LHON cells due to lower autophagic flux supported by observed lower levels of autophagosome marker LC3-II. The observed impaired lower autophagic flux in mutant cells correlated with increased levels of BNIP3 and BNIP3L/Nix in mutant cells.  相似文献   

13.
《Autophagy》2013,9(2):173-183
Platonin is a photosensitizer used for photodynamic therapy. In this study, we tested the effect of platonin on human leukemic cells. Treatment with platonin in the dark markedly reduced cell membrane integrity, and induced significant G0/G1 arrest of a panel of human leukemic cell lines, including U937, HL-60, K562, NB4 and THP-1. Development of hypodiploid cells was not evident in these cell lines within 24 h, but was noted in U937, HL-60 and NB4 cells after 24 h. No myeloid differentiation of these cells was noted after 5-day treatment. Intriguingly, exposure of monoblastic U937 cells to platonin caused changes characteristic of autophagy, including appearance of cytoplasmic membranous vacuoles and formation of acidic vesicular organelles (AVO) in more than 95% of cells. The platonin-induced autophagy was accompanied by localization of microtubule-associated protein 1 light chain 3 to autophagosomes. Pretreatment with pancaspase inhibitor Z-VAD-fmk abrogated the platonin-induced hypodiploidity, but had no effect on growth inhibition and formation of AVO, indicating a caspase-independent autophagy-associated cell death. Pretreatment of cells with 3-methyladenine attenuated platonin-mediated growth inhibition and formation of AVO. Platonin augmented the expression of BNIP3 in both U937 and K562 cells, whereas had an opposite effect on phosphorylation of mTOR downstream molecule p70S6K. Platonin, at the condition inducing autophagy, induced the mitochondrial membrane permeation. These results suggest that the platonin is capable of inhibiting growth as well as inducing cell death, mainly autophagy-associated, in leukemic cells via a mitochondria-mediated and caspase-independent pathway. A markedly less viability inhibition was noted to human monocytes, the normal counterpart of these myeloid leukemic cells. Platonin, other than a photodynamic agent, may offer significant promise as a therapeutic agent against leukemia.  相似文献   

14.
These days, cancer can still not be effectively cured because cancer cells readily develop resistance to anticancer drugs. Therefore, an effective combination of drugs with different mechanisms to prevent drug resistance has become a very important issue. Furthermore, the BH3‐only protein BNIP3 is involved in both apoptotic and autophagic cell death. In this study, lung cancer cells were treated with a chemotherapy drug alone or in combination to identify the role of BNIP3 and autophagy in combination chemotherapy for treating cancer. Our data revealed that various combinational treatments of two drugs could increase cancer cell death and cisplatin in combination with rapamycin or LBH589, which triggered the cell cycle arrest at the S phase. Cells with autophagosome and pEGFP‐LC3 puncta increased when treated with drugs. To confirm the role of autophagy, cancer cells were pre‐treated with the autophagy inhibitor 3‐methyladenine (3‐MA). 3‐MA sensitized cancer cells to chemotherapy drug treatments. These results suggest that autophagy may be responsible for cell survival in combination chemotherapy for lung cancer. Moreover, BNIP3 was induced and localized in mitochondria when cells were treated with drugs. The transfection of a dominant negative transmembrane deletion construct of BNIP3 (BNIP3ΔTM) and treatment of a reactive oxygen species (ROS) inhibitor suppressed chemo drug‐induced cell death. These results indicate that BNIP3 and ROS may be involved in combination chemo drug‐induced cell death. However, chemo drug‐induced autophagy may protect cancer cells from drug cytotoxicity. As a result, inhibiting autophagy may improve the effects of combination chemotherapy when treating lung cancer.  相似文献   

15.
Mitophagy is a highly conserved cellular process that maintains the mitochondrial quantity by eliminating dysfunctional or superfluous mitochondria through autophagy machinery. The mitochondrial outer membrane protein BNIP3L/Nix serves as a mitophagy receptor by recognizing autophagosomes. BNIP3L is initially known to clear the mitochondria during the development of reticulocytes. Recent studies indicated it also engages in a variety of physiological and pathological processes. In this review, we provide an overview of how BNIP3L induces mitophagy and discuss the biological functions of BNIP3L and its regulation at the molecular level. We further discuss current evidence indicating the involvement of BNIP3L-mediated mitophagy in human disease, particularly in cancer and neurological disorders.Subject terms: Cancer, Mitophagy  相似文献   

16.
17.
Bcl-2/adenovirus E1B-19 kDa-interacting protein 3 (BNIP3) is an important mediator of cell survival and a member of the Bcl-2 family of proteins that regulate programmed cell death and autophagy. We have previously established a link between the expression of oncogenic HRas and up-regulation of BNIP3 and the control of autophagy in cancer cells. However, in view of varied expression of BNIP3 in different tumor types and emerging uncertainties as to the role of epigenetic silencing, oncogenic regulation and the role of BNIP3 in cancer are still poorly understood.  相似文献   

18.
Macroautophagy (called autophagy hereafter) is a catabolic process activated by various types of stress, most notably by nutrient deprivation. The autophagic degradation of intracellular macromolecules provides metabolic support for the cell; however, this physiological process can also initiate a form of cell death (type 2 programmed cell death). Here we report that oxygen deprivation can activate the autophagic pathway in human cancer cell lines. We observed that hypoxia induced distinct cellular changes characteristic of autophagy such as an increase in cytoplasmic acidic vesicles, and processing and cellular localization of microtubule-associated protein-1 light chain 3. Oxygen deprivation-induced autophagy did not require nutrient deprivation, hypoxia-inducible factor-1 (HIF-1) activity, or expression of the HIF-1 target gene BNIP3 (Bcl-2 adenovirus E1a nineteen kilodalton interacting protein 3) or BNIP3L (BNIP3 like protein). Hypoxia-induced autophagy involved the activity of 5'-AMP-activated protein kinase (AMPK). Finally, we determined that cells lacking the autophagy gene ATG5 were unable to activate the autophagic machinery in hypoxia, had decreased oxygen consumption and increased glucose uptake under hypoxia, had increased survival in hypoxic environments, and exhibited accelerated growth as xenografted tumors. Together, these findings suggest that the autophagic degradation of cellular macromolecules contributes to the energetic balance governed by AMPK, and that suppression of autophagy in transformed cells can increase both resistance to hypoxic stress and tumorigenicity.  相似文献   

19.
In most cases, macroautophagy/autophagy serves to alleviate cellular stress and acts in a pro-survival manner. However, the effects of autophagy are highly contextual, and autophagic cell death (ACD) is emerging as an alternative paradigm of (stress- and drug-induced) cell demise. AT 101 ([-]-gossypol), a natural compound from cotton seeds, induces ACD in glioma cells as confirmed here by CRISPR/Cas9 knockout of ATG5 that partially, but significantly rescued cell survival following AT 101 treatment. Global proteomic analysis of AT 101-treated U87MG and U343 glioma cells revealed a robust decrease in mitochondrial protein clusters, whereas HMOX1 (heme oxygenase 1) was strongly upregulated. AT 101 rapidly triggered mitochondrial membrane depolarization, engulfment of mitochondria within autophagosomes and a significant reduction of mitochondrial mass and proteins that did not depend on the presence of BAX and BAK1. Conversely, AT 101-induced reduction of mitochondrial mass could be reversed by inhibiting autophagy with wortmannin, bafilomycin A1 and chloroquine. Silencing of HMOX1 and the mitophagy receptors BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like) significantly attenuated AT 101-dependent mitophagy and cell death. Collectively, these data suggest that early mitochondrial dysfunction and HMOX1 overactivation synergize to trigger lethal mitophagy, which contributes to the cell killing effects of AT 101 in glioma cells.

Abbreviations: ACD, autophagic cell death; ACN, acetonitrile; AT 101, (-)-gossypol; BAF, bafilomycin A1; BAK1, BCL2-antagonist/killer 1; BAX, BCL2-associated X protein; BH3, BCL2 homology region 3; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; BP, Biological Process; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; CC, Cellular Component; Con, control; CQ, chloroquine; CRISPR, clustered regularly interspaced short palindromic repeats; DMEM, Dulbecco’s Modified Eagle Medium; DTT, 1,4-dithiothreitol; EM, electron microscopy; ER, endoplasmatic reticulum; FACS, fluorescence-activated cell sorting; FBS, fetal bovine serum; FCCP, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GO, Gene Ontology; HAcO, acetic acid; HMOX1, heme oxygenase 1; DKO, double knockout; LC-MS/MS, liquid chromatography coupled to tandem mass spectrometry; LPL, lipoprotein lipase, MEFs, mouse embryonic fibroblasts; mPTP, mitochondrial permeability transition pore; MTG, MitoTracker Green FM; mt-mKeima, mito-mKeima; MT-ND1, mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1; PBS, phosphate-buffered saline; PE, phosphatidylethanolamine; PI, propidium iodide; PRKN, parkin RBR E3 ubiquitin protein ligase; SDS, sodium dodecyl sulfate; SQSTM1/p62, sequestome 1; STS, staurosporine; sgRNA, single guide RNA; SILAC, stable isotope labeling with amino acids in cell culture; TFA, trifluoroacetic acid, TMRM, tetramethylrhodamine methyl ester perchlorate; WM, wortmannin; WT, wild-type  相似文献   


20.
CD47 and the 19 kDa interacting protein-3 (BNIP3) in T cell apoptosis   总被引:5,自引:0,他引:5  
CD47 is a surface receptor that induces either coactivation or apoptosis in lymphocytes, depending on the ligand(s) bound. Interestingly, the apoptotic pathway is independent of caspase activation and cytochrome c release and is accompanied by early mitochondrial dysfunction with suppression of mitochondrial membrane potential (Deltapsim). Using CD47 as bait in a yeast two-hybrid system, we identified the Bcl-2 homology 3 (BH3)-only protein 19 kDa interacting protein-3 (BNIP3), a pro-apoptotic member of the Bcl-2 family, as a novel partner. Interaction between CD47 and the BH3-only protein was confirmed by immunoprecipitation analysis, and CD47-induced apoptosis was inhibited by attenuating BNIP3 expression with antisense oligonucleotides. Finally, we showed that the C-terminal domain of thrombospondin-1 (TSP-1), but not signal-regulatory protein (SIRPalpha1), is the ligand for CD47 involved in inducing cell death. Immunofluorescence analysis of CD47 and BNIP3 revealed a partial colocalization of both molecules under basal conditions. After T cell stimulation via CD47, BNIP3 translocates to the mitochondria to induce apoptosis. These results show that the BH3-dependent apoptotic pathways, previously shown to be activated by intracellular pro-apoptotic events, can also be turned on by surface receptors. This new pathway results in a fast induction of cell death resembling necrosis, which is likely to play an important role in lymphocyte regulation at inflammatory sites and/or in the vicinity of thrombosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号