首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Air pollution constitutes a significant stimulus of asthma exacerbations; however, the impacts of exposure to major air pollutants on asthma-related hospital admissions and emergency room visits (ERVs) have not been fully determined.

Objective

We sought to quantify the associations between short-term exposure to air pollutants [ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter ≤10μm (PM10) and PM2.5] and the asthma-related emergency room visits (ERV) and hospitalizations.

Methods

Systematic computerized searches without language limitation were performed. Pooled relative risks (RRs) and 95% confidence intervals (95%CIs) were estimated using the random-effect models. Sensitivity analyses and subgroup analyses were also performed.

Results

After screening of 246 studies, 87 were included in our analyses. Air pollutants were associated with significantly increased risks of asthma ERVs and hospitalizations [O3: RR(95%CI), 1.009 (1.006, 1.011); I2 = 87.8%, population-attributable fraction (PAF) (95%CI): 0.8 (0.6, 1.1); CO: RR(95%CI), 1.045 (1.029, 1.061); I2 = 85.7%, PAF (95%CI): 4.3 (2.8, 5.7); NO2: RR(95%CI), 1.018 (1.014, 1.022); I2 = 87.6%, PAF (95%CI): 1.8 (1.4, 2.2); SO2: RR(95%CI), 1.011 (1.007, 1.015); I2 = 77.1%, PAF (95%CI): 1.1 (0.7, 1.5); PM10: RR(95%CI), 1.010 (1.008, 1.013); I2 = 69.1%, PAF (95%CI): 1.1 (0.8, 1.3); PM2.5: RR(95%CI), 1.023 (1.015, 1.031); I2 = 82.8%, PAF (95%CI): 2.3 (1.5, 3.1)]. Sensitivity analyses yielded compatible findings as compared with the overall analyses without publication bias. Stronger associations were found in hospitalized males, children and elderly patients in warm seasons with lag of 2 days or greater.

Conclusion

Short-term exposures to air pollutants account for increased risks of asthma-related ERVs and hospitalizations that constitute a considerable healthcare utilization and socioeconomic burden.  相似文献   

2.

Background

There is widespread concern about the possible health effects of traffic-related air pollution. Nitrogen dioxide (NO2) is a convenient marker of primary pollution. We investigated the associations between lung function and current residential exposure to a range of air pollutants (particularly NO2, NO, NOx and particulate matter) in London children. Moreover, we placed the results for NO2 in context with a meta-analysis of published estimates of the association.

Methods and Findings

Associations between primary traffic pollutants and lung function were investigated in 4884 children aged 9–10 years who participated in the Child Heart and Health Study in England (CHASE). A systematic literature search identified 13 studies eligible for inclusion in a meta-analysis. We combined results from the meta-analysis with the distribution of the values of FEV1 in CHASE to estimate the prevalence of children with abnormal lung function (FEV1<80% of predicted value) expected under different scenarios of NO2 exposure. In CHASE, there were non-significant inverse associations between all pollutants except ozone and both FEV1 and FVC. In the meta-analysis, a 10 μg/m3 increase in NO2 was associated with an 8 ml lower FEV1 (95% CI: -14 to -1 ml; p: 0.016). The observed effect was not modified by a reported asthma diagnosis. On the basis of these results, a 10 μg/m3 increase in NO2 level would translate into a 7% (95% CI: 4% to 12%) increase of the prevalence of children with abnormal lung function.

Conclusions

Exposure to traffic pollution may cause a small overall reduction in lung function and increase the prevalence of children with clinically relevant declines in lung function.  相似文献   

3.

Introduction

Evidence based on ecological studies in China suggests that short-term exposure to particulate matter (PM) is associated with cardiovascular mortality. However, there is less evidence of PM-related morbidity for coronary heart disease (CHD) in China. This study aims to investigate the relationship between acute PM exposure and CHD incidence in people aged above 40 in Shanghai.

Methods

Daily CHD events during 2005–2012 were identified from outpatient and emergency department visits. Daily average concentrations for particulate matter with aerodynamic diameter less than 10 microns (PM10) were collected over the 8-year period. Particulate matter with aerodynamic diameter less than 2.5 microns (PM2.5) were measured from 2009 to 2012. Analyses were performed using quasi-poisson regression models adjusting for confounders, including long-term trend, seasonality, day of the week, public holiday and meteorological factors. The effects were also examined by gender and age group (41–65 years, and >65 years).

Results

There were 619928 CHD outpatient and emergency department visits. The average concentrations of PM10 and PM2.5 were 81.7μg/m3 and 38.6μg/m3, respectively. Elevated exposure to PM10 and PM2.5 was related with increased risk of CHD outpatients and emergency department visits in a short time course. A 10 μg/m3 increase in the 2-day PM10 and PM2.5 was associated with increase of 0.23% (95% CI: 0.12%, 0.34%) and 0.74% (95% CI: 0.44%, 1.04%) in CHD morbidity, respectively. The associations appeared to be more evident in the male and the elderly.

Conclusion

Short-term exposure to high levels of PM10 and PM2.5 was associated with increased risk of CHD outpatient and emergency department visits. Season, gender and age were effect modifiers of their association.  相似文献   

4.
BackgroundLate-life exposure to ambient air pollution is a modifiable risk factor for dementia, but epidemiological studies have shown inconsistent evidence for cognitive decline. Air quality (AQ) improvement has been associated with improved cardiopulmonary health and decreased mortality, but to the best of our knowledge, no studies have examined the association with cognitive function. We examined whether AQ improvement was associated with slower rate of cognitive decline in older women aged 74 to 92 years.Methods and findingsWe studied a cohort of 2,232 women residing in the 48 contiguous US states that were recruited from more than 40 study sites located in 24 states and Washington, DC from the Women’s Health Initiative (WHI) Memory Study (WHIMS)-Epidemiology of Cognitive Health Outcomes (WHIMS-ECHO) study. They were predominantly non-Hispanic White women and were dementia free at baseline in 2008 to 2012. Measures of annual (2008 to 2018) cognitive function included the modified Telephone Interview for Cognitive Status (TICSm) and the telephone-based California Verbal Learning Test (CVLT). We used regionalized universal kriging models to estimate annual concentrations (1996 to 2012) of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) at residential locations. Estimates were aggregated to the 3-year average immediately preceding (recent exposure) and 10 years prior to (remote exposure) WHIMS-ECHO enrollment. Individual-level improved AQ was calculated as the reduction from remote to recent exposures. Linear mixed effect models were used to examine the associations between improved AQ and the rates of cognitive declines in TICSm and CVLT trajectories, adjusting for sociodemographic (age; geographic region; race/ethnicity; education; income; and employment), lifestyle (physical activity; smoking; and alcohol), and clinical characteristics (prior hormone use; hormone therapy assignment; depression; cardiovascular disease (CVD); hypercholesterolemia; hypertension; diabetes; and body mass index [BMI]). For both PM2.5 and NO2, AQ improved significantly over the 10 years before WHIMS-ECHO enrollment. During a median of 6.2 (interquartile range [IQR] = 5.0) years of follow-up, declines in both general cognitive status (β = −0.42/year, 95% CI: −0.44, −0.40) and episodic memory (β = −0.59/year, 95% CI: −0.64, −0.54) were observed. Greater AQ improvement was associated with slower decline in TICSm (βPM2.5improvement = 0.026 per year for improved PM2.5 by each IQR = 1.79 μg/m3 reduction, 95% CI: 0.001, 0.05; βNO2improvement = 0.034 per year for improved NO2 by each IQR = 3.92 parts per billion [ppb] reduction, 95% CI: 0.01, 0.06) and CVLT (βPM2.5 improvement = 0.070 per year for improved PM2.5 by each IQR = 1.79 μg/m3 reduction, 95% CI: 0.02, 0.12; βNO2improvement = 0.060 per year for improved NO2 by each IQR = 3.97 ppb reduction, 95% CI: 0.005, 0.12) after adjusting for covariates. The respective associations with TICSm and CVLT were equivalent to the slower decline rate found with 0.9 to 1.2 and1.4 to 1.6 years of younger age and did not significantly differ by age, region, education, Apolipoprotein E (ApoE) e4 genotypes, or cardiovascular risk factors. The main limitations of this study include measurement error in exposure estimates, potential unmeasured confounding, and limited generalizability.ConclusionsIn this study, we found that greater improvement in long-term AQ in late life was associated with slower cognitive declines in older women. This novel observation strengthens the epidemiologic evidence of an association between air pollution and cognitive aging.

Diana Younan and colleagues investigate whether air quality improvement is associated with rate of cognitive decline in community-dwelling older women in the United States.  相似文献   

5.
BackgroundAir pollution has been related to incidence of type 2 diabetes (T2D). We assessed the joint association of various air pollutants with the risk of T2D and examined potential modification by obesity status and genetic susceptibility on the relationship.Methods and findingsA total of 449,006 participants from UK Biobank free of T2D at baseline were included. Of all the study population, 90.9% were white and 45.7% were male. The participants had a mean age of 56.6 (SD 8.1) years old and a mean body mass index (BMI) of 27.4 (SD 4.8) kg/m2. Ambient air pollutants, including particulate matter (PM) with diameters ≤2.5 μm (PM2.5), between 2.5 μm and 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were measured. An air pollution score was created to assess the joint exposure to the 4 air pollutants. During a median of 11 years follow-up, we documented 18,239 incident T2D cases. The air pollution score was significantly associated with a higher risk of T2D. Compared to the lowest quintile of air pollution score, the hazard ratio (HR) (95% confidence interval [CI]) for T2D was 1.05 (0.99 to 1.10, p = 0.11), 1.06 (1.00 to 1.11, p = 0.051), 1.09 (1.03 to 1.15, p = 0.002), and 1.12 (1.06 to 1.19, p < 0.001) for the second to fifth quintile, respectively, after adjustment for sociodemographic characteristics, lifestyle factors, genetic factors, and other covariates. In addition, we found a significant interaction between the air pollution score and obesity status on the risk of T2D (p-interaction < 0.001). The observed association was more pronounced among overweight and obese participants than in the normal-weight people. Genetic risk score (GRS) for T2D or obesity did not modify the relationship between air pollution and risk of T2D. Key study limitations include unavailable data on other potential T2D-related air pollutants and single-time measurement on air pollutants.ConclusionsWe found that various air pollutants PM2.5, PM2.5–10, NO2, and NO, individually or jointly, were associated with an increased risk of T2D in the population. The stratified analyses indicate that such associations were more strongly associated with T2D risk among those with higher adiposity.

Xiang Li and co-workers study the potential influence of obesity on associations between air pollutants and incidence of type 2 diabetes.  相似文献   

6.
In recent decades, ambient air pollution has been an important public health issue in Beijing, but little is known about air pollution and health effects after the 2008 Beijing Olympics. We conduct a time-series analysis to evaluate associations between daily mortality (nonaccidental, cardiovascular and respiratory mortality) and the major air pollutants (carbon monoxide, nitrogen dioxide and particulate matter less than 10 µm in aerodynamic diameter) in Beijing during the two years (2009∼2010) after the 2008 Beijing Olympics. We used generalized additive model to analyze relationship between daily mortality and air pollution. In single air pollutant model with two-day moving average concentrations of the air pollutants, increase in their interquartile range (IQR) associated with percent increase in nonaccidental mortality, 2.55 percent [95% confidence interval (CI): 1.99, 3.11] for CO, 2.54 percent (95% CI: 2.00, 3.08) for NO2 and 1.80 percent (95% CI: 1.21, 2.40) for PM10, respectively; increases in the IQR of air pollutant concentrations associated with percent increase in cardiovascular mortality, 2.88 percent (95% CI: 2.10,3.65) for CO, 2.63 percent (95% CI: 1.87, 3.39) for NO2 and 1.72 percent (95% CI: 0.88, 2.55) for PM10, respectively; and increase in IQR of air pollutant concentrations associated with respiratory mortality, 2.39 percent (95% CI: 0.68, 4.09) for CO, 1.79 percent (95% CI: 0.11, 3.47) for NO2 and 2.07 percent (95% CI: 0.21, 3.92) for PM10, respectively. We used the principal component analysis to avoid collinearity of varied air pollutants. In addition, the association stratified by sex and age was also examined. Ambient air pollution remained a significant contributor to nonaccidental and cardiopulmonary mortalities in Beijing during 2009∼2010.  相似文献   

7.

Background

A nationwide asthma survey on the effects of air pollution is lacking in Taiwan. The purpose of this study was to evaluate the time trend and the relationship between air pollution and health care services for asthma in Taiwan.

Methods

Health care services for asthma and ambient air pollution data were obtained from the National Health Insurance Research database and Environmental Protection Administration from 2000 through 2009, respectively. Health care services, including those related to the outpatient and inpatient visits were compared according to the concentration of air pollutants.

Results

The number of asthma-patient visits to health-care facilities continue to increase in Taiwan. Relative to the respective lowest quartile of air pollutants, the adjusted relative risks (RRs) of the outpatient visits in the highest quartile were 1.10 (P-trend  = 0.013) for carbon monoxide (CO), 1.10 (P-trend  = 0.015) for nitrogen dioxide (NO2), and 1.20 (P-trend <0.0001) for particulate matter with an aerodynamic diameter ≦10µm (PM10) in the child group (aged 0–18). For adults aged 19–44, the RRs of outpatient visits were 1.13 (P-trend = 0.078) for CO, 1.17 (P-trend = 0.002) for NO2, and 1.13 (P-trend <0.0001) for PM10. For adults aged 45–64, the RRs of outpatient visits were 1.15 (P-trend = 0.003) for CO, 1.19 (P-trend = 0.0002) for NO2, and 1.10 (P-trend = 0.001) for PM10. For the elderly (aged≥ 65), the RRs of outpatient visits in were 1.12 (P-trend  = 0.003) for NO2 and 1.10 (P-trend  = 0.006) for PM10. For inpatient visits, the RRs across quartiles of CO level were 1.00, 1.70, 1.92, and 1.86 (P-trend  = 0.0001) in the child group. There were no significant linear associations between inpatient visits and air pollutants in other groups.

Conclusions

There were positive associations between CO levels and childhood inpatient visits as well as NO2, CO and PM10 and outpatient visits.  相似文献   

8.
Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi''an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi’an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi''an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5.  相似文献   

9.
Exposure to ambient air pollutants increases risk for adverse cardiovascular health outcomes in adults. We aimed to evaluate the contribution of prenatal air pollutant exposure to cardiovascular health, which has not been thoroughly evaluated. The Testing Responses on Youth (TROY) study consists of 768 college students recruited from the University of Southern California in 2007–2009. Participants attended one study visit during which blood pressure, heart rate and carotid artery arterial stiffness (CAS) and carotid artery intima-media thickness (CIMT) were assessed. Prenatal residential addresses were geocoded and used to assign prenatal and postnatal air pollutant exposure estimates using the U.S. Environmental Protection Agency’s Air Quality System (AQS) database. The associations between CAS, CIMT and air pollutants were assessed using linear regression analysis. Prenatal PM10 and PM2.5 exposures were associated with increased CAS. For example, a 2 SD increase in prenatal PM2.5 was associated with CAS indices, including a 5% increase (β = 1.05, 95% CI 1.00–1.10) in carotid stiffness index beta, a 5% increase (β = 1.05, 95% CI 1.01–1.10) in Young’s elastic modulus and a 5% decrease (β = 0.95, 95% CI 0.91–0.99) in distensibility. Mutually adjusted models of pre- and postnatal PM2.5 further suggested the prenatal exposure was most relevant exposure period for CAS. No associations were observed for CIMT. In conclusion, prenatal exposure to elevated air pollutants may increase carotid arterial stiffness in a young adult population of college students. Efforts aimed at limiting prenatal exposures are important public health goals.  相似文献   

10.

Background

Few studies have investigated the associations between outdoor air pollution and outpatient visits for respiratory diseases (RDs) in general population.

Methods

We collected daily outpatient data of primary RDs from five hospitals in Jinan during January 2012 and December 2016, as well as daily measurements of air pollutants from the Jinan Environmental Monitoring Center and daily meteorological variables from the China Meteorological Data Sharing Service System. A generalized additive model (GAM) with quasi-Poisson regression was constructed to estimate the associations between daily average concentrations of outdoor air pollutants (PM2.5,PM10, SO2, NO2, CO and O3) and daily outpatient visits of RDs after adjusting for long-time trends, seasonality, the “day of the week” effect, and weather conditions. Subgroup analysis stratified by gender, age group and the type of RDs was conducted.

Results

A total of 1,373,658 outpatient visits for RDs were identified. Increases of 10?μg/m3 in PM2.5, PM10, NO2, CO and O3 were associated with0.168% (95% CI, 0.072–0.265%), 0.149% (95% CI, 0.082–0.215%), 0.527% (95% CI, 0.211–0.843%), 0.013% (95% CI, 0.003–0.023%), and 0.189% (95% CI, 0.032–0.347%) increases in daily outpatient visits for RDs, respectively. PM2.5 and PM10 showed instant and continuous effects, while NO2, CO and O3 showed delayed effects on outpatient visits for RDs. In stratification analysis, PM2.5 and PM10 were associated with acute RDs only.

Conclusions

Exposure to outdoor air pollutants including PM2.5, PM10, NO2, CO and O3 associated with increased risk of outpatient visits for RDs.
  相似文献   

11.

Background

Environmental and lifestyle factors regulate the expression and release of immune mediators. It has been hypothesised that ambient air pollution may be such an external factor and that the association between air pollution and impaired glucose metabolism may be attributable to inflammatory processes. Therefore, we assessed the associations between air pollution, circulating immune mediators and impaired glucose metabolism.

Methods

We analysed concentrations of 14 pro- and anti-inflammatory immune mediators as well as fasting glucose and insulin levels in plasma of 363 women from the Study on the influence of Air pollution on Lung function, Inflammation and Aging (SALIA, Germany). Exposure data for a group of pollutants such as nitrogen oxides (NO2, NOx) and different fractions of particulate matter were available for the participants'' residences. We calculated the association between the pollutants and impaired glucose metabolism by multiple regression models.

Results

The study participants had a mean age of 74.1 (SD 2.6) years and 48% showed impaired glucose metabolism based on impaired fasting glucose or previously diagnosed type 2 diabetes. Only long-term exposure NO2 and NOx concentrations showed positive associations (NO2: OR 1.465, 95% CI 1.049-2.046, NOx: OR 1.409, 95% CI 1.010-1.967) per increased interquartile range of NO2 (14.65 µg/m3) or NOx (43.16 µg/m3), respectively, but statistical significance was lost after correction for multiple comparisons. Additional adjustment for circulating immune mediators or the use of anti-inflammatory medication had hardly any impact on the observed ORs.

Conclusions

Our results suggest that exposure to nitrogen oxides may contribute to impaired glucose metabolism, but the associations did not reach statistical significance so that further studies with larger sample sizes are required to substantiate our findings. Our data do not preclude a role of inflammatory mechanisms in adipose or other tissues which may not be reflected by immune mediators in plasma.  相似文献   

12.
To evaluate risk via inhalation exposure of polybrominated diphenyl ethers (PBDEs) in office environment, thirty-six pairs air samples including PM2.5 (particles with aerodynamic diameter less than 2.5 μm), PM10 (particles with aerodynamic diameter less than 10 μm), total suspended particles (TSP) with matching gas phase were collected in office environment in Shanghai, China. The average concentrations of PM2.5, PM10 and TSP were 20.4, 27.2 and 50.3 μg/m3, respectively. Σ15PBDEs mean concentrations in PM2.5, PM10, TSP and gas phase were 51.8, 110.7, 148 and 59.6 pg/m3, respectively. Much more PBDEs distributed in fine fractions than coarse ones. PBDEs congener profiles found in PM2.5, PM10 and TSP (dominated by BDE-209) were different from that in gas phase (dominated by the tri- to penta-BDEs). Approximately 3.20 pg/kg/d PM2.5 bound PBDEs can be inhaled into the lung; 3.62 pg/kg/d PM10-PM2.5(particles with aerodynamic diameter of 2.5-10 μm) bound PBDEs tended to be deposited in the upper part of respiratory system, and the intake of PBDEs via gas-phase was 2.74 pg/kg/d. The exposure of PBDEs was far below the minimal risk levels (MRLs), indicating lower risk from PBDEs via inhalation in the studied office in Shanghai.  相似文献   

13.

Background and Objective

High concentrations of air pollutants have been linked to increased incidence of stroke in North America and Europe but not yet assessed in mainland China. The aim of this study is to evaluate the association between stroke hospitalization and short-term elevation of air pollutants in Wuhan, China.

Methods

Daily mean NO2, SO2 and PM10 levels, temperature and humidity were obtained from 2006 through 2008. Data on stroke hospitalizations (ICD 10: I60–I69) at four hospitals in Wuhan were obtained for the same period. A time-stratified case-crossover design was performed by season (April-September and October-March) to assess effects of pollutants on stroke hospital admissions.

Results

Pollution levels were higher in October-March with averages of 136.1 µg/m3 for PM10, 63.6 µg/m3 for NO2 and 71.0 µg/m3 for SO2 than in April-September when averages were 102.0 µg/m3, 41.7 µg/m3 and 41.7 µg/m3, respectively (p<.001). During the cold season, every 10 µg/m3 increase in NO2 was associated with a 2.9% (95%C.I. 1.2%–4.6%) increase in stroke admissions on the same day. Every 10 ug/m3 increase in PM10 daily concentration was significantly associated with an approximate 1% (95% C.I. 0.1%–1.4%) increase in stroke hospitalization. A two-pollutant model indicated that NO2 was associated with stroke admissions when controlling for PM10. During the warm season, no significant associations were noted for any of the pollutants.

Conclusions

Exposure to NO2 is significantly associated with stroke hospitalizations during the cold season in Wuhan, China when pollution levels are 50% greater than in the warm season. Larger and multi-center studies in Chinese cities are warranted to validate our findings.  相似文献   

14.
BackgroundHeavy fine particulate matter (PM2.5) air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV) for total and cause-specific respiratory diseases in urban areas in Beijing.MethodsDaily counts of respiratory ERV from Jan 1 to Dec 31, 2013, were obtained from ten general hospitals located in urban areas in Beijing. Concurrently, data on PM2.5 were collected from the Beijing Environmental Protection Bureau, including 17 ambient air quality monitoring stations. A generalized-additive model was used to explore the respiratory effects of PM2.5, after controlling for confounding variables. Subgroup analyses were also conducted by age and gender.ResultsA total of 92,464 respiratory emergency visits were recorded during the study period. The mean daily PM2.5 concentration was 102.1±73.6 μg/m3. Every 10 μg/m3 increase in PM2.5 concentration at lag0 was associated with an increase in ERV, as follows: 0.23% for total respiratory disease (95% confidence interval [CI]: 0.11%-0.34%), 0.19% for upper respiratory tract infection (URTI) (95%CI: 0.04%-0.35%), 0.34% for lower respiratory tract infection (LRTI) (95%CI: 0.14%-0.53%) and 1.46% for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) (95%CI: 0.13%-2.79%). The strongest association was identified between AECOPD and PM2.5 concentration at lag0-3 (3.15%, 95%CI: 1.39%-4.91%). The estimated effects were robust after adjusting for SO2, O3, CO and NO2. Females and people 60 years of age and older demonstrated a higher risk of respiratory disease after PM2.5 exposure.ConclusionPM2.5 was significantly associated with respiratory ERV, particularly for URTI, LRTI and AECOPD in Beijing. The susceptibility to PM2.5 pollution varied by gender and age.  相似文献   

15.
The adverse effects of traffic-related air pollution on children’s respiratory health have been widely reported, but few studies have evaluated the impact of traffic-control policies designed to reduce urban air pollution. We assessed associations between traffic-related air pollutants and respiratory/allergic symptoms amongst 8–9 year-old schoolchildren living within the London Low Emission Zone (LEZ). Information on respiratory/allergic symptoms was obtained using a parent-completed questionnaire and linked to modelled annual air pollutant concentrations based on the residential address of each child, using a multivariable mixed effects logistic regression analysis. Exposure to traffic-related air pollutants was associated with current rhinitis: NOx (OR 1.01, 95% CI 1.00–1.02), NO2 (1.03, 1.00–1.06), PM10 (1.16, 1.04–1.28) and PM2.5 (1.38, 1.08–1.78), all per μg/m3 of pollutant, but not with other respiratory/allergic symptoms. The LEZ did not reduce ambient air pollution levels, or affect the prevalence of respiratory/allergic symptoms over the period studied. These data confirm the previous association between traffic-related air pollutant exposures and symptoms of current rhinitis. Importantly, the London LEZ has not significantly improved air quality within the city, or the respiratory health of the resident population in its first three years of operation. This highlights the need for more robust measures to reduce traffic emissions.  相似文献   

16.

Background

Lung function and exacerbations of chronic obstructive pulmonary disease (COPD) have been associated with short-term exposure to air pollution. However, the effect of long-term exposure to particulate matter from industry and traffic on COPD as defined by lung function has not been evaluated so far. Our study was designed to investigate the influence of long-term exposure to air pollution on respiratory symptoms and pulmonary function in 55-year-old women. We especially focused on COPD as defined by GOLD criteria and additionally compared the effects of air pollution on respiratory symptoms by questionnaire data and by lung function measurements.

Methods

In consecutive cross sectional studies conducted between 1985–1994, we investigated 4757 women living in the Rhine-Ruhr Basin of Germany. NO2 and PM10 exposure was assessed by measurements done in an 8 km grid, and traffic exposure by distance from the residential address to the nearest major road using Geographic Information System data. Lung function was determined and COPD was defined by using the GOLD criteria. Chronic respiratory symptoms and possible confounders were defined by questionnaire data. Linear and logistic regressions, including random effects were used to account for confounding and clustering on city level.

Results

The prevalence of COPD (GOLD stages 1–4) was 4.5%. COPD and pulmonary function were strongest affected by PM10 and traffic related exposure. A 7 μg/m3 increase in five year means of PM10 (interquartile range) was associated with a 5.1% (95% CI 2.5%–7.7%) decrease in FEV1, a 3.7% (95% CI 1.8%–5.5%) decrease in FVC and an odds ratio (OR) of 1.33 (95% CI 1.03–1.72) for COPD. Women living less than 100 m from a busy road also had a significantly decreased lung function and COPD was 1.79 times more likely (95% CI 1.06–3.02) than for those living farther away. Chronic symptoms as based on questionnaire information showed effects in the same direction, but less pronounced.

Conclusion

Chronic exposure to PM10, NO2 and living near a major road might increase the risk of developing COPD and can have a detrimental effect on lung function.  相似文献   

17.
There are fewer longitudinal studies from China on symptoms as described for the sick building syndrome (SBS). Here, we performed a two-year prospective study and investigated associations between environmental parameters such as room temperature, relative air humidity (RH), carbon dioxide (CO2), nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), particulate matter (PM10), and health outcomes including prevalence, incidence and remission of SBS symptoms in junior high schools in Taiyuan, China. Totally 2134 pupils participated at baseline, and 1325 stayed in the same classrooms during the study period (2010–2012). The prevalence of mucosal symptoms, general symptoms and symptoms improved when away from school (school-related symptoms) was 22.7%, 20.4% and 39.2%, respectively, at baseline, and the prevalence increased during follow-up (P<0.001). At baseline, both indoor and outdoor SO2 were found positively associated with prevalence of school-related symptoms. Indoor O3 was shown to be positively associated with prevalence of skin symptoms. At follow-up, indoor PM10 was found to be positively associated with new onset of skin, mucosal and general symptoms. CO2 and RH were positively associated with new onset of mucosal, general and school-related symptoms. Outdoor SO2 was positively associated with new onset of skin symptoms, while outdoor NO2 was positively associated with new onset of skin, general and mucosal symptoms. Outdoor PM10 was found to be positively associated with new onset of skin, general and mucosal symptoms as well as school-related symptoms. In conclusion, symptoms as described for SBS were commonly found in school children in Taiyuan City, China, and increased during the two-year follow-up period. Environmental pollution, including PM10, SO2 and NO2, could increase the prevalence and incidence of SBS and decrease the remission rate. Moreover, parental asthma and allergy (heredity) and pollen or pet allergy (atopy) can be risk factors for SBS.  相似文献   

18.
BackgroundA large number of studies about effects of air pollutants on cardiovascular mortality have been conducted; however, those investigating association between air pollutants and cardiovascular morbidity are limited, especially in developing countries.MethodsA time-series analysis on the short-term association between outdoor air pollutants including particulate matter (PM) with diameters of 10 µm or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) and cardiovascular morbidity was conducted in Tianjin, China based on 4 years of daily data (2008–2011). The morbidity data were stratified by sex and age. The effects of air pollutants during the warm season and the cool season were also analyzed separately.ResultsEach increase in PM10, SO2, and NO2 by increments of 10 µg/m3 in a 2-day average concentration was associated with increases in the cardiovascular morbidity of 0.19% with 95 percent confidence interval (95% CI) of 0.08–0.31, 0.43% with 95% CI of 0.03–0.84, and 0.52% with 95% CI of −0.09–1.13, respectively. The effects of air pollutants were more evident in the cool season than those in the warm season, females and the elderly were more vulnerable to outdoor air pollution.ConclusionsAll estimated coefficients of PM10, SO2 and NO2 are positive but only the effect of SO2 implied statistical significance at the 5% level. Moreover, season, sex and age might modify health effects of outdoor air pollutants. This work may bring inspirations for formulating local air pollutant standards and social policy regarding cardiovascular health of residents.  相似文献   

19.
Previous studies have reported epigenetic changes induced by environmental exposures. However, previous investigations did not distinguish 5-methylcytosine (5mC) from a similar oxidative form with opposite functions, 5-hydroxymethylcytosine (5hmC). Here, we measured blood DNA global 5mC and 5hmC by ELISA and used adjusted mixed-effects regression models to evaluate the effects of ambient PM10 and personal PM2.5 and its elemental components—black carbon (BC), aluminum (Al), calcium (Ca), potassium (K), iron (Fe), sulfur (S), silicon (Si), titanium (Ti), and zinc (Zn)—on blood global 5mC and 5hmC levels. The study was conducted in 60 truck drivers and 60 office workers in Beijing, China from The Beijing Truck Driver Air Pollution Study at 2 exams separated by one to 2 weeks. Blood 5hmC level (0.08%) was ∼83-fold lower than 5mC (6.61%). An inter-quartile range (IQR) increase in same-day PM10 was associated with increases in 5hmC of 26.1% in office workers (P = 0.004), 20.2% in truck drivers (P = 0.014), and 21.9% in all participants combined (P < 0.001). PM10 effects on 5hmC were increasingly stronger when averaged over 4, 7, and 14 d preceding assessment (up to 132.6% for the 14-d average in all participants, P < 0.001). PM10 effects were also significant after controlling for multiple testing (family-wise error rate; FWER < 0.05). 5hmC was not correlated with personal measures of PM2.5 and elemental components (FWER > 0.05). 5mC showed no correlations with PM10, PM2.5, and elemental components measures (FWER > 0.05). Our study suggests that exposure to ambient PM10 affects 5hmC over time, but not 5mC. This finding demonstrates the need to differentiate 5hmC and 5mC in environmental studies of DNA methylation.  相似文献   

20.
PM2.5 and PM10 samples were collected simultaneously in each season in Beijing, Tianjin and Shijiazhuang to identify the characteristics of water-soluble ion compositions in the North China Plain. The water-soluble ions displayed significant seasonal variation. The dominant ions were NO3 , SO4 2−, NH4 + and Cl, accounting for more than 90% and 86% to the mass of total water-soluble ions in PM2.5 and PM10, respectively. The anion/cation ratio indicated that the ion acidity of each city varied both between sites and seasonally. Over 50% of the ion species were enriched in small particles ≤1 µm in diameter. The [NO3 ]/[SO4 2−] ratio indicated that vehicles accounted for the majority of the particulate pollution in Beijing. Shijiazhuang, a city highly reliant on coal combustion, had a higher SO4 2− concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号