首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous study, the isolation of ugonin J, K, and L, which are luteolin derivatives, from the roots of Helminthostachys zeylanica and their identification as potent melanogenesis inhibitors, was described. The structure activity relationship (SAR) investigation in that study revealed that the catechol moiety in the B-ring of the flavone skeleton of ugonin K was important for its melanogenesis inhibitory activity, and the presence of the low polarity substituents at the C-7 position enhanced this activity. In order to further investigate the SAR of the C-7-substituent in the luteolin derivatives, different groups were selectively introduced at the C-7 position of luteolin after borax protection of the catechol hydroxyl group and the C-5 hydroxyl group. NMR and MS analysis of the borax protected derivatives revealed that the borax protects not only hydroxyl groups of catechol on the B ring but also the 5-hydroxyl group on the A ring. Eight luteolin derivatives were synthesized and evaluated for melanogenesis inhibitory effect in B16 melanoma cells. Two bulky groups and six alkoxyl groups were introduced at the C-7 position. The resulting luteolin derivatives showed improved melanogenesis and cell proliferation inhibitory activities. From among these derivatives, 7-O-hexylluteolin (7) showed the highest activity and inhibited the melanogenesis to 14% at 6.25?μM. The present study also revealed that the length of the carbon chain rather than the bulky substituent was more important for the melanogenesis inhibitory activity.  相似文献   

2.
Anti-apoptotic Bcl-2 family proteins are vital for cancer cells to escape apoptosis, which make them attractive targets for cancer therapy. Recently, a lead compound 1 was found to modestly inhibit the binding of BH3 peptide to Bcl-2 protein with a Ki value of 5.2?µM. Based on this, a series of substituted tyrosine derivatives were developed and tested for their binding affinities to Bcl-2 protein. Results indicated that these compounds exhibited potent binding affinities to Bcl-2 and Mcl-1 protein but not to Bcl-XL protein. Promisingly, compound 6i inhibited the binding of BH3 peptide to Bcl-2 and Mcl-1 protein with a Ki value of 450 and 190?nM respectively, and showed obvious anti-proliferative activities against tested cancer cells.  相似文献   

3.
Bcl-2 and other closely related members of the Bcl-2 family of proteins inhibit the death of neurons and many other cells in response to a wide variety of pathogenic stimuli. Bcl-2 inhibition of apoptosis is mediated by its binding to pro-apoptotic proteins, e.g., Bax and tBid, inhibition of their oligomerization, and thus inhibition of mitochondrial outer membrane pore formation, through which other pro-apoptotic proteins, e.g., cytochrome c, are released to the cytosol. Bcl-2 also exhibits an indirect antioxidant activity caused by a sub-toxic elevation of mitochondrial production of reactive oxygen species and a compensatory increase in expression of antioxidant gene products. While classic approaches to cytoprotection based on Bcl-2 family gene delivery have significant limitations, cellular protein transduction represents a new and exciting approach utilizing peptides and proteins as drugs with intracellular targets. The mechanism by which proteins with transduction domains are taken up by cells and delivered to their targets is controversial but usually involves endocytosis. The effectiveness of transduced proteins may therefore be limited by their release from endosomes into the cytosol.  相似文献   

4.
Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.  相似文献   

5.
B-cell lymphoma 2 (Bcl-2) family proteins regulate survival, mitochondria morphology dynamics and metabolism in many cell types including neurons. Huntington''s disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat tract in the IT15 gene that encodes for the protein huntingtin (htt). In vitro and in vivo models of HD and HD patients'' tissues show abnormal mitochondrial function and increased cell death rates associated with alterations in Bcl-2 family protein expression and localization. This review aims to draw together the information related to Bcl-2 family protein alterations in HD to decipher their potential role in mutated htt-related cell death and mitochondrial dysfunction.  相似文献   

6.
7.
Intrinsic apoptosis in mammals is regulated by protein–protein interactions among the B-cell lymphoma-2 (Bcl-2) family. The sequences, structures and binding specificity between pro-survival Bcl-2 proteins and their pro-apoptotic Bcl-2 homology 3 motif only (BH3-only) protein antagonists are now well understood. In contrast, our understanding of the mode of action of Bax and Bak, the two necessary proteins for apoptosis is incomplete. Bax and Bak are isostructural with pro-survival Bcl-2 proteins and also interact with BH3-only proteins, albeit weakly. Two sites have been identified; the in-groove interaction analogous to the pro-survival BH3-only interaction and a site on the opposite molecular face. Interaction of Bax or Bak with activator BH3-only proteins and mitochondrial membranes triggers a series of ill-defined conformational changes initiating their oligomerization and mitochondrial outer membrane permeabilization. Many actions of the mammalian pro-survival Bcl-2 family are mimicked by viruses. By expressing proteins mimicking mammalian pro-survival Bcl-2 family proteins, viruses neutralize death-inducing members of the Bcl-2 family and evade host cell apoptosis during replication. Remarkably, structural elements are preserved in viral Bcl-2 proteins even though there is in many cases little discernible sequence conservation with their mammalian counterparts. Some viral Bcl-2 proteins are dimeric, but they have distinct structures to those observed for mammalian Bcl-2 proteins. Furthermore, viral Bcl-2 proteins modulate innate immune responses regulated by NF-κB through an interface separate from the canonical BH3-binding groove. Our increasing structural understanding of the viral Bcl-2 proteins is leading to new insights in the cellular Bcl-2 network by exploring potential alternate functional modes in the cellular context. We compare the cellular and viral Bcl-2 proteins and discuss how alterations in their structure, sequence and binding specificity lead to differences in behavior, and together with the intrinsic structural plasticity in the Bcl-2 fold enable exquisite control over critical cellular signaling pathways.  相似文献   

8.
Bcl-2 family proteins play a vital role for cancer cell in escaping apoptosis, and small-molecule anti-apoptotic Bcl-2 protein inhibitors have been developed as new anticancer therapies. In current study, a series of substituted 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were developed based on the lead compound 1 (Ki = 5.2 µM against Bcl-2 protein). The fluorescence polarization assays suggested that active compounds possessed potent binding affinities to both Bcl-2 and Mcl-1 protein, but had minor or no binding affinities to Bcl-XL protein. MTT assays showed that these compounds had certain anti-proliferative activities against cancer cells. Furthermore, it was found that active compound 11t could induce cell apoptosis and caspase-3 activation in a dose-dependent manner in Jurkat cells.  相似文献   

9.
Luteolin has long been used in traditional Chinese medicine for treatment of various diseases. Recent studies have suggested that administration of luteolin yields cardioprotective effects during ischemia/reperfusion (I/R) in rats. However, the precise mechanisms of this action remain unclear. The aim of this study is to confirm that luteolin-mediated extracellular signal regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways are responsible for their cardioprotective effects during I/R. Wistar rats were divided into the following groups: (i) DMSO group (DMSO); (ii) I/R group (I/R); (iii) luteolin+I/R group (Lut+I/R); (iv) ERK1/2 inhibitor PD98059+I/R group (PD+I/R); (v) PD98059+luteolin+I/R group (PD+Lut+I/R); and (vi) JNK inhibitor SP600125+I/R group (SP+I/R). The following properties were measured: contractile function of isolated heart and cardiomyocytes; infarct size; the release of lactate dehydrogenase (LDH); the percentage of apoptotic cells; the expression levels of Bcl-2 and Bax; and phosphorylation status of ERK1/2, JNK, type 1 protein phosphatase (PP1a), phospholamban (PLB) and sarcoplasmic reticulum Ca2+-ATPase (SERCA2a). Our data showed that pretreatment with luteolin or SP600125 significantly improved the contraction of the isolated heart and cardiomyocytes, reduced infarct size and LDH activity, decreased the rate of apoptosis and increased the Bcl-2/Bax ratio. However, pretreatment with PD98059 alone before I/R had no effect on the above indexes. Further, these consequences of luteolin pretreatment were abrogated by co-administration of PD98059. We also found that pretreatment with PD98059 caused a significant increase in JNK expression, and SP600125 could cause ERK1/2 activation during I/R. In addition, we are the first to demonstrate that luteolin affects PP1a expression, which results in the up-regulation of the PLB, thereby relieving its inhibition of SERCA2a. These results showed that luteolin improves cardiomyocyte contractile function after I/R injury by an ERK1/2-PP1a-PLB-SERCA2a-mediated mechanism independent of JNK signaling pathway.  相似文献   

10.
Curcuma phaeocaulis Valeton is a commonly prescribed Chinese medical herb for tumor therapy. In this study, an extract of Curcuma phaeocaulis Valeton referred as Cpv was prepared and its anti-tumor effect was evaluated with MCF-7 and MDA-MB-231 cells. Curcuma phaeocaulis Valeton power was extracted with ethanol and the main components of the extract (Cpv) were analyzed with HPLC. The effect of Cpv on MCF-7 cells proliferation, intracellular reactive oxygen species (ROS) formation, mitochondrial membrane potential (ΔΨm), apoptosis, apoptotic related proteins, MDA-MB-231 cell migration, and integrins expression were determined. Furthermore, the effect of Cpv on some key signal transduction molecules was also investigated. Furanodienone, germacrone and furanodiene were identified as the main components of Cpv. Cpv treatment significantly inhibited cell proliferation, increased LDH release, induced intracellular ROS formation, and decreased ΔΨm in a dose-dependent manner in MCF-7 cells. Cpv induced apoptosis without affecting cell migration. Cpv increased protein expression of Bax, PARP, cleaved PARP, caspase-3, 7, JNK1, p-p42/44MAPK, NF-κB, IKKα, IKKβ, decreased protein expression of Bcl-2, Bcl-xL, Bim, Bik, Bad, integrin β5, p42/44MAPK without affecting integrin α5, β1, and p38MAPK protein expression. We concluded that Cpv inhibited MCF-7 cells proliferation by inducing apoptosis mediated by increasing ROS formation, decreasing ΔΨm, regulating Bcl-2 family proteins expression, and activating caspases. Cpv treatment also modulated several signaling transduction pathways. These results might provide some molecular basis for the anti-tumor activity of Curcuma phaeocaulis Valeton.  相似文献   

11.
Hepatocyte nuclear factor 4α (HNF4α) is a nuclear receptor that regulates the expression of genes involved in the secretion of apolipoprotein B (apoB)-containing lipoproteins and in glucose metabolism. In the present study, we identified a naturally occurring flavonoid, luteolin, as a repressor of HNF4α by screening for effectors of the human microsomal triglyceride transfer protein (MTP) promoter. Luciferase reporter gene assays revealed that the activity of the MTP gene promoter was suppressed by luteolin and that the mutation of HNF4α-binding element abolished luteolin responsiveness. Luteolin treatment caused a significant decrease in the mRNA levels of HNF4α target genes in HepG2 cells and inhibited apoB-containing lipoprotein secretion in HepG2 and differentiated Caco2 cells. The interaction between luteolin and HNF4α was demonstrated using absorption spectrum analysis and luteolin-immobilized beads. Luteolin did not affect the DNA binding of HNF4α to the promoter region of its target genes but suppressed the acetylation level of histone H3 in the promoter region of certain HNF4α target genes. Short term treatment of mice with luteolin significantly suppressed the expression of HNF4α target genes in the liver. In addition, long term treatment of mice with luteolin significantly suppressed their diet-induced obesity and improved their serum glucose and lipid parameters. Importantly, long term luteolin treatment lowered serum VLDL and LDL cholesterol and serum apoB protein levels, which was not accompanied by fat accumulation in the liver. These results suggest that the flavonoid luteolin ameliorates an atherogenic lipid profile in vivo that is likely to be mediated through the inactivation of HNF4α.  相似文献   

12.
The effect of hardening on the composition of phenolic compounds in winter wheat (Triticum aestivum L.) leaves was studied. It was shown that green tissues contained mainly flavonoids, especially flavons (C-and O-glycosides of apigenin and luteolin), and also ferulic acid derivatives. Among flavons, derivatives of luteolin dominated, including isoorientin, which comprised approximately a half of the content of all identified phenolic compounds. Low temperature induced the accumulation of phenolic compounds in winter wheat leaves, whereas their qualitative composition was not practically changed.  相似文献   

13.
Mauro Degli Esposti 《BBA》2002,1553(3):331-340
Pro-apoptotic proteins of the Bcl-2 family are known to act on mitochondria and facilitate the release of cytochrome c, but the biochemical mechanism of this action is unknown. Association with mitochondrial membranes is likely to be important in determining the capacity of releasing cytochrome c. The present work provides new evidence suggesting that some pro-apoptotic proteins like Bid have an intrinsic capacity of binding and exchanging membrane lipids. Detailed analysis indicates a significant sequence similarity between a subset of Bcl-2 family proteins including Bid and Nix and plant lipid transfer proteins. The similar structural signatures could be related to common interactions with membrane lipids. Indeed, isolated Bid shows a lipid transfer activity that is even higher than that of plant lipid transfer proteins. To investigate the possible relevance of these structure-function correlations to the apoptotic action of Bid, cell free assays were established with isolated mitochondria, recombinant Bid and a variety of exogenous lipids. Micromolar concentrations of lysolipids such as lysophosphatidylcholine were found to change the association of Bid with mitochondria and also stimulate the release of cytochrome c promoted by Bid. The changes in mitochondrial association and cytochrome c release were enhanced by the presence of liposomes of lipid composition similar to that of mitochondrial membranes. Thus, a mixture of liposomes, mitochondria and key lysolipids could reproduce the conditions enabling Bid to transfer lipids between donor and acceptor membranes, and also change its reversible association with mitochondria. Bid was also found to enhance the incorporation of a fluorescent lysolipid, but not of a related fatty acid, into mitochondria. On the basis of the results presented here, it is hypothesised that Bid action may depend upon its capacity of exchanging lipids and lysolipids with mitochondrial membranes. The hypothesis is discussed in relation to current models for the integrated action of pro-apoptotic proteins of the Bcl-2 family.  相似文献   

14.
15.
16.
17.
B-cell lymphoma (Bcl-2) protein is an anti-apoptotic member of the Bcl-2 family. It is functionally demarcated into four Bcl-2 homology (BH) domains: BH1, BH2, BH3, BH4, one flexible loop domain (FLD), a transmembrane domain (TM), and an X domain. Bcl-2’s BH domains have clearly been elucidated from a structural perspective, whereas the conformation of FLD has not yet been predicted, despite its important role in regulating apoptosis through its interactions with JNK-1, PKC, PP2A phosphatase, caspase 3, MAP kinase, ubiquitin, PS1, and FKBP38. Many important residues that regulate Bcl-2 anti-apoptotic activity are present in this domain, for example Asp34, Thr56, Thr69, Ser70, Thr74, and Ser87. The structural elucidation of the FLD would likely help in attempts to accurately predict the effect of mutating these residues on the overall structure of the protein and the interactions of other proteins in this domain. Therefore, we have generated an increased quality model of the Bcl-2 protein including the FLD through modeling. Further, molecular dynamics (MD) simulations were used for FLD optimization, to predict the flexibility, and to determine the stability of the folded FLD. In addition, essential dynamics (ED) was used to predict the collective motions and the essential subspace relevant to Bcl-2 protein function. The predicted average structure and ensemble of MD-simulated structures were submitted to the Protein Model Database (PMDB), and the Bcl-2 structures obtained exhibited enhanced quality. This study should help to elucidate the structural basis for Bcl-2 anti-apoptotic activity regulation through its binding to other proteins via the FLD.  相似文献   

18.
19.
20.
Bcl-2 family proteins have important roles in tumor initiation, progression and resistance to therapy. Pro-survival Bcl-2 proteins are regulated by their interactions with pro-death BH3-only proteins making these protein–protein interactions attractive therapeutic targets. Although these interactions have been extensively characterized biochemically, there is a paucity of tools to assess these interactions in cells. Here, we address this limitation by developing quantitative, high throughput microscopy assays to characterize Bcl-2 and BH3-only protein interactions in live cells. We use fluorescent proteins to label the interacting proteins of interest, enabling visualization and quantification of their mitochondria-localized interactions. Using tool compounds, we demonstrate the suitability of our assays to characterize the cellular activity of putative therapeutic molecules that target the interaction between pro-survival Bcl-2 and pro-death BH3-only proteins. In addition to the relevance of our assays for drug discovery, we anticipate that our work will contribute to an improved understanding of the mechanisms that regulate these important protein–protein interactions within the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号