首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究江苏高邮局地水循环特征,应对气候变化和减缓洪涝灾害.本研究采集江苏高邮自2015年7月—2017年10月的121个大气降水样品及环境因子数据,分析该区大气降水氢氧同位素特征,揭示不同季节水汽来源及影响因素.结果表明: 大气降水δD(δ18O)季节变化明显,冬半年偏正,夏半年偏负;过量氘值亦呈现冬高夏低;年尺度上,大气降水中δD(δ18O)与温度和降水量皆为负相关关系,呈现“反温度效应”和“降水量效应”;季节尺度上,均未呈现出“温度效应”,秋冬两季呈现出“降水量效应”;HYSPLIT气团轨迹模型结果进一步表明,江苏高邮夏季水汽主要来源于我国南海、印度洋及太平洋,而春、秋、冬季水汽主要来源于亚欧大陆、大西洋、北冰洋水汽混合及局地蒸发.大气降水δD(δ18O)值的季节变化主要受到季风活动以及厄尔尼诺-南方涛动(ENSO)的影响,降水中氢氧同位素值清晰地记录了厄尔尼诺向拉尼拉之间的过渡.  相似文献   

2.
High-frequency variation of Norway spruce radial increment [Picea abies (L.) Karst.] and its dependence on various climatic variables was compared in stands across latitudinal and altitudinal transects in southwestern and eastern Germany, Norway, and Finland. The tested variables included local temperature and precipitation, northern hemisphere temperature anomalies, and the climatic teleconnection patterns (North Atlantic Oscillation, East Atlantic, East Atlantic Jet, East Atlantic/West Russia, and Scandinavian patterns). Climatic impact on radial increment increased towards minimum and maximum values of the long-term temperature and precipitation regimes, i.e. trees growing under average conditions respond less strongly to climatic variation. Increment variation was clearly correlated with temperature. Warm Mays promoted radial increments in all regions. If the long-term average temperature sum at a stand was below 1,200-1,300 degree days, above average summer temperature increased radial increment. In regions with more temperate climate, water availability was also a growth-limiting factor. However, in those cases where absolute precipitation sum was clearly related to radial increment variation, its effect was dependent on temperature-induced water stress. The estimated dates of initiation and cessation of growing season and growing season length were not clearly related to annual radial increment. Significant correlations were found between radial increment and climatic teleconnection indices, especially with the winter, May and August North Atlantic Oscillation indices, but it is not easy to find a physiological interpretation for these findings.  相似文献   

3.
利用滇西地区两个不同海拔采样点的云南松树轮样本,建立树轮宽度标准化年表,研究其径向生长对气候和水文要素的响应。结果表明:滇西云南松径向生长主要受降水量、气温和径流量的影响,其中高海拔(2413.3 m)云南松径向生长受夏季高温的制约和季风季节径流量影响,而低海拔(1062.6 m)云南松径向生长受生长季的降水量和全年径流量影响。滇西高海拔云南松径向生长对气温变化的响应受温度阈值影响表现出不稳定性;低海拔云南松径向生长对降水量和径流量的响应,在20世纪80年代均受到东亚夏季风的减弱而出现波动。滇西不同海拔云南松径向生长与亚洲夏季风活动及厄尔尼诺存在联系。  相似文献   

4.
A 2–3-year resolution record of stalagmite oxygen isotope variations from the south flank of the Qinling Mountains, central China, has revealed the Asian summer monsoon (ASM) precipitation variations in the investigated area over the past 750 years. The summer monsoon precipitation gradually increased since 1249 AD, reaching its highest values in the period 1535–1685 AD, and then decreased with substantial decadal- to centennial-scale fluctuations. The monsoon precipitation increased again between 1920 and 1970 AD. Three intervals of high monsoon precipitation were identified: 1535–1685 AD, 1755–1835 AD, and 1920–1970 AD. Three intervals of low precipitation were inferred in 1249–1325 AD, 1390–1420 AD, and 1890–1915 AD. The δ18O composition and lithological features of the stalagmite coincidently indicate a wetter climate during the Little Ice Age (LIA), which is also confirmed by climate records from Chinese historical documents within this area. A comparison with other high-resolution speleothem records indicates regional differences in monsoon precipitation variability from the south to the north of central China in the last 750 years on decadal- to centennial-scale. Power spectrum analysis of the δ18O record shows significant 117.8-, 34.6-, 14-, 10.3-, and ~ 6-year periodicities. These periodicities are widely observed in the climate records from ASM-controlled areas of China and are consistent with the Gleissburg periodicity, Brϋckner periodicity, sunspot periodicity of solar activity, and El Nińo–Southern Oscillation (ENSO) periodicity. These correlations suggest that both solar activity and ENSO periodicity may have had important influences on ASM precipitation in China over the past 750 years.  相似文献   

5.
Traditional detrending methods assign equal mean value to all tree-ring series for chronology developments, despite that the mean annual growth changes in different time periods. We find that the strength of a tree-ring model can be improved by giving more weights to tree-ring series that have a stronger climate signal and less weight to series that have a weaker signal. We thus present an ensemble weighting method to mitigate these potential biases and to more accurately extract the climate signals in dendroclimatology studies. This new method has been used to develop the first annual precipitation reconstruction (previous August to current July) at the Songmingyan Mountain and to recalculate the tree-ring chronology from Shenge site in Dulan area in northeastern Tibetan Plateau (TP), a marginal area of Asian summer monsoon. The ensemble weighting method explains 31.7% of instrumental variance for the reconstructions at Songmingyan Mountain and 57.3% of the instrumental variance in the Dulan area, which are higher than those developed using traditional methods. We focus on the newly introduced reconstruction at Songmingyan Mountain, which showsextremely dry (wet) epochs from 1862–1874, 1914–1933 and 1991–1999 (1882–1905). These dry/wet epochs were also found in the marginal areas of summer monsoon and the Indian subcontinent, indicating the linkages between regional hydroclimate changes and the Indian summer monsoon.  相似文献   

6.
Numerous insects including pests and beneficial species undertake windborne migrations over hundreds of kilometers. In East Asia, climate-induced changes in large-scale atmospheric circulation systems are affecting wind-fields and precipitation zones and these, in turn, are changing migration patterns. We examined the consequences in a serious rice pest, the brown planthopper (BPH, Nilaparvata lugens) in East China. BPH cannot overwinter in temperate East Asia, and infestations there are initiated by several waves of windborne spring or summer migrants originating from tropical areas in Indochina. The East Asian summer monsoon, characterized by abundant rainfall and southerly winds, is of critical importance for these northward movements. We analyzed a 42-year dataset of meteorological parameters and catches of BPH from a standardized network of 341 light-traps in South and East China. We show that south of the Yangtze River during summer, southwesterly winds have weakened and rainfall increased, while the summer precipitation has decreased further north on the Jianghuai Plain. Together, these changes have resulted in shorter migratory journeys for BPH leaving South China. As a result, pest outbreaks of BPH in the key rice-growing area of the Lower Yangtze River Valley (LYRV) have declined since 2001. We show that these changes to the East Asian summer monsoon weather parameters are driven by shifts in the position and intensity of the Western Pacific subtropical high (WPSH) system that have occurred during the last 20 years. As a result, the relationship between WPSH intensity and BPH immigration that was previously used to predict the size of the immigration to the LYRV has now broken down. Our results demonstrate that migration patterns of a serious rice pest have shifted in response to the climate-induced changes in precipitation and wind pattern, with significant consequences for the population management of migratory pests.  相似文献   

7.
利用青海不同生境祁连圆柏树木年轮样本,采用3种不同去趋势方法建立树轮年表,结合青海30个气象站的气象资料,分析不同生境和去趋势方法下祁连圆柏径向生长对气候的响应差异。结果表明,祁连山区,生长季前期的平均气温是祁连圆柏树木径向生长的主要限制性因子,NEP树轮标准化宽度年表与生长季前期冬季平均气温相关最好;在柴达木盆地,生长季降水量是该地区树木径向生长的限制性因子,SPL树轮年表对生长季降水量相关较好;在青南高原,祁连圆柏径向生长对春季温度响应最为敏感,而SPL年表与春季温度呈现明显的负相关关系,相关系数达-0.606;而在青海东部地区,祁连圆柏树木径向生长对气候的响应总体不显著。位于青海西部和北部的柴达木盆地和祁连山区祁连圆柏径向生长受西风气候的影响显著,尤其是柴达木盆地,其气候受西风主导;而青南高原受西南季风影响更为显著,该地区祁连圆柏径向生长同时受西南季风气候和海拔高度两方面影响;在青海东部,祁连圆柏径向生长受东亚季风影响更为显著。  相似文献   

8.
Variation in climatic conditions is an important driving force of ecological processes. Populations are under selection to respond to climatic changes with respect to phenology of the annual cycle (e.g. breeding, migration) and life‐history. As teleconnections can reflect climate on a global scale, the responses of terrestrial animals are often investigated in relation to the El Niño‐Southern Oscillation and North Atlantic Oscillation. However, investigation of other teleconnections and local climate is often neglected. In this study, we examined over a 33‐year period the relationships between four teleconnections (El Niño‐Southern Oscillation, North Atlantic Oscillation, Arctic Oscillation, East Atlantic Pattern), local weather parameters (temperature and precipitation) and reproduction in great tits Parus major and blue tits Cyanistes caeruleus in the Carpathian Basin, Hungary. Furthermore, we explored how annual variations in the timing of food availability were correlated with breeding performance. In both species, annual laying date was negatively associated with the Arctic Oscillation. The date of peak abundance of caterpillars was negatively associated with local temperatures in December–January, while laying date was negatively related to January–March temperature. We found that date of peak abundance of caterpillars and laying date of great tits advanced, while in blue tits clutch size decreased over the decades but laying date did not advance. The results suggest that weather conditions during the months that preceded the breeding season, as well as temporally more distant winter conditions, were connected to breeding date. Our results highlight that phenological synchronization to food availability was different between the two tit species, namely it was disrupted in blue tits only. Additionally, the results suggest that in order to find the climatic drivers of the phenological changes of organisms, we should analyze a broader range of global meteorological parameters.  相似文献   

9.
Cladosporium conidia have been shown to be important aeroallergens in many regions throughout the world, but annual spore concentrations vary considerably between years. Understanding these annual fluctuations may be of value in the clinical management of allergies. This study investigates the number of days in summer when spore concentration exceeds the allergenic threshold in relation to regional temperature and precipitation at two sites in England and Wales over 27 years. Results indicate that number of days in summer when the Cladosporium spores are above the allergenic concentration is positively correlated with regional temperature and negatively correlated with precipitation for both sites over the study period. Further analysis used a winter North Atlantic Oscillation index to explore the potential for long-range forecasting of the aeroallergen. For both spore measurement sites, a positive correlation exists between the winter North Atlantic Oscillation index and the number of days in summer above the allergenic threshold for Cladosporium spore concentration.  相似文献   

10.
Significant changes in the global atmospheric and oceanic circulation system occurred during the Younger Dryas cold period. Several researchers have demonstrated a weakening of intensity of the Indian Ocean Summer Monsoon during that period. However, the exact characteristics of the East Asian Summer Monsoon still remain vague. Here we present a late-glacial precipitation proxy record of the East Asian Summer Monsoon, based on the peat cellulose δ13C found in Hani, Northeast China. Both the peat cellulose record and a pollen record from Lake Sihailongwan sediment indicate an abrupt increase in precipitation in the region during the Younger Dryas period. These results support the occurrence of wet conditions in the north and of dry conditions in the south of the Chinese Mainland during that period. By examining the activity of the East Asian Summer Monsoon on an interannual timescale, we propose a theory for the anomalous precipitation distribution that we attribute to the occurrence of an El Niño-like phenomenon in the Equatorial Pacific Ocean during the Younger Dryas. In this case, the intensity of the Western Pacific subtropical high may strengthen, and its position over the western Pacific Ocean may move northward. This could cause an enhancement of the East Asian Summer Monsoon and migration of a monsoonal rainbelt towards the northern region of the Chinese mainland, resulting in a precipitation distribution of wet conditions in the north and dry conditions in the south. Therefore, this anomalous rainfall distribution should be considered to indicate the strengthening of the East Asian Summer Monsoon, in anti-phase with the Indian Ocean Summer monsoon that weakened during the same period. This agrees with the previously revealed anti-phase variations of the two monsoons during the ice-rafted debris cold events of the North Atlantic Ocean. It appears that, in relation to the abrupt temperature drop in the Northern Hemisphere on centennial to millennial time scales, anti-phase variations of the two Asian summer monsoons occurred.  相似文献   

11.
利用GNIP提供的我国西北地区的8个站点和本研究的2个站点的降水同位素数据以及相应的气象数据,结合HYSPLIT模型和水滴蒸发模型,分析了我国西北地区降水δ18O和d的时空分布,对该区二次蒸发效应进行了存在性判定与定量讨论,并探讨了二次蒸发效应的敏感因子.结果表明: 夏季风期间,新疆地区δ18O和d值由南向北均走低,陕甘宁地区由南向北,由东向西δ18O值整体上升,d值呈现下降趋势;冬季风期间,西北地区由南到北,由东向西δ18O值整体上逐渐减小,新疆地区d值由南向北升高,陕甘宁地区由南向北d值呈现下降趋势,由东向西有微弱的增大.我国西北地区夏季风时期的大气降水线的斜率、截距(6.80,-0.07)显著低于研究区全年的大气降水线方程的斜率、截距(7.27,3.37)和冬季风时期的大气降水线的斜率、截距(7.46,6.07),表明夏季风期间二次蒸发作用较强.研究区夏季风时期的蒸发比率均值为4.49%,高于冬季风时的3.65%,而黄土高原周边站点冬季风时期的蒸发比率高于夏季风时期,这与黄土高原近年来干旱加剧密不可分.另外,二次蒸发作用的强度随相对湿度、降水量和水汽压的增大而减弱,随温度(大于0 ℃)的升高而增强,但各因子在不同范围时对二次蒸发作用的影响有差异.  相似文献   

12.
We developed the first tree-ring width chronology from Quercus brantii Lindel for the period 1796–2015 in the southern Zagros Mountains, Iran, using standard dendrochronological procedures. Climate-growth relationships revealed that DecemberöFebruary precipitation has strong positive effects (r = 0.66; P < 0.01) on the species’ growth while mean temperature during the growing season has strong negative effects. Spatial correlations with Palmer Drought Severity Index (PDSI) and gridded precipitation data revealed that the chronology contains regional climate signals and tree growth variations may represent precipitation fluctuations over large areas of the Middle East. The linear regression model accounts for 44% of the actual DecemberöFebruary precipitation variance. The reconstructed precipitation revealed that over the period 1850–2015 extreme dry years occurred in 1870-71, 1898, 1960 and 1963-64, and extreme wet years occurred in 1851, 1885, 1916 and 1921 in the southern Zagros region. The longest dry period lasted 16 years and occurred from 1958 to 1973. Two-year consecutive wet and dry events showed the highest frequencies and the average length of dry and wet events were 2.9 and 3.6 years over the reconstructed period. Correlations between the long-term reconstructed precipitation and the North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO) confirmed the effects of teleconnection patterns on precipitation in the southern Zagros region.  相似文献   

13.
Thick Cenozoic deposits in the Qaidam Basin provide great potential for understanding the tectonic history, paleoclimatic changes, and evolution of the East Asian Monsoon. This study examines the pollen record from the KC-1 core for the interval covering the later Early to Late Miocene (18–5 Ma). Thermophilic taxa percentages are high between 18 and 14 Ma and decrease after this time, a pattern which fits well with the Middle Miocene Climatic Optimum (MMCO) between 18 and 14 Ma and global climatic cooling after 14 Ma. During the same period, xerophytic taxa percentages gradually increase and those of the conifers gradually decrease, suggesting an aridification process in the Qaidam region driven by the gradual strengthening of the East Asian winter monsoon (EAWM) and weakening of the East Asian summer monsoon (EASM). The global climate cooling process appears to have driven the climatic development of the Qaidam Basin region throughout the Miocene, but the uplift of the Tibetan Plateau also contributed.  相似文献   

14.
128 samples from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea were analyzed for grain size, clay minerals, biogenic opal content and quartz in order to reconstruct changes in East Asian monsoon climate since 8.5 Ma. An abrupt change of terrigenous mass accumulation rate (MAR), clay mineral assemblage, median grain size and biogenic opal MAR about 5.2 Ma suggests that between 8.5-5.2 Ma the source of terrigenous sediment was mainly in the region of surface uplift and basaltic volcanism in southern Vietnam. A simple model of East Asian summer monsoon evolution was based on the clay/feldspar ratio, kaolinite/chlorite ratio and biogenic opal MAR. The summer monsoon has two periods of maximum strength at 8.5-7.6 Ma and 7.1-6.2 Ma. Subsequently, there was a relatively stable period at 6.2-3.5 Ma, continued intensification about 3.5-2.5 Ma, and gradually weakening after 2.5 Ma. Since 1 Ma the monsoon has intensified, with remarkable high-frequency and amplitude variability. Simultaneous increase in sedimentation rates at ODP Sites 1143, 1146 and 1148, as well as in MAR of terrigenous materials, quartz, feldspar and clay minerals at ODP Site 1143 at 3.5-2.5 Ma, may be the erosional response to both global climatic deterioration and the strengthening of the East Asian summer monsoon after about 3-4 Ma.  相似文献   

15.
Background and AimsThe impact of global warming on life cycle timing is uncertain. We investigated changes in life cycle timing in a global warming scenario. We compared Arabidopsis thaliana ecotypes adapted to the warm/dry Cape Verdi Islands (Cvi), Macaronesia, and the cool/wet climate of the Burren (Bur), Ireland, Northern Europe. These are obligate winter and summer annuals, respectively.MethodsUsing a global warming scenario predicting a 4 °C temperature rise from 2011 to approx. 2080, we produced F1 seeds at each end of a thermogradient tunnel. Each F1 cohort (cool and warm) then produced F2 seeds at both ends of the thermal gradient in winter and summer annual life cycles. F2 seeds from the winter life cycle were buried at three positions along the gradient to determine the impact of temperature on seedling emergence in a simulated winter life cycle.Key ResultsIn a winter life cycle, increasing temperatures advanced flowering time by 10.1 d °C–1 in the winter annual and 4.9 d °C–1 in the summer annual. Plant size and seed yield responded positively to global warming in both ecotypes. In a winter life cycle, the impact of increasing temperature on seedling emergence timing was positive in the winter annual, but negative in the summer annual. Global warming reduced summer annual plant size and seed yield in a summer life cycle.ConclusionsSeedling emergence timing observed in the north European summer annual ecotype may exacerbate the negative impact of predicted increased spring and summer temperatures on their establishment and reproductive performance. In contrast, seedling establishment of the Macaronesian winter annual may benefit from higher soil temperatures that will delay emergence until autumn, but which also facilitates earlier spring flowering and consequent avoidance of high summer temperatures. Such plasticity gives winter annual arabidopsis ecotypes a distinct advantage over summer annuals in expected global warming scenarios. This highlights the importance of variation in the timing of seedling establishment in understanding plant species responses to anthropogenic climate change.  相似文献   

16.
Estimated pike Esox lucius recruitment varied by a factor of 16 for females from 1944 to 1991 and by a factor of 27 for males from 1943 to 1990 in Windermere, a temperate, mesotrophic U.K. lake. No significant stock–recruitment relationships were found, but analysis with general additive models (GAMs) revealed that early autumnal water temperature, strength and direction of the North Atlantic Oscillation displacement (corresponding to different climatic conditions in winter) and zooplankton abundance but above all, late summer water temperature were important explanatory variables over the entire time series. Female recruitment was also influenced by young-of-the-year winter temperature. There was no evidence that perch Perca fluviatilis year-class strength, lake level or the summer position of the Gulf Stream influenced recruitment. The fitted models explained up to c. 65% of the overall observed variation between years.  相似文献   

17.
基于SPEI指数的长江中下游流域干旱时空特征分析   总被引:4,自引:0,他引:4  
曹博  张勃  马彬  唐敏  王国强  吴乾慧  贾艳青 《生态学报》2018,38(17):6258-6267
基于长江中下游流域1961—2015年129个气象站点的逐日气温和降水数据,利用标准化降水蒸散指数(SPEI),对长江中下游流域近55年年尺度及各季节干旱变化趋势、站次比、强度和频率进行了分析,并探讨了干旱和区域气温、降水变化及ENSO的关系。结果表明:(1)在区域尺度,近55年长江中下游流域年尺度、春季和秋季呈干旱化趋势,春季干旱化趋势显著;夏季和冬季呈湿润化趋势。空间变化上,对于年尺度,汉江流域、中游干流区及洞庭湖流域以干旱化趋势为主,鄱阳湖流域、下游干流区和太湖流域以湿润化趋势为主;春季和秋季分别有96.90%和92.25%的站点呈干旱化趋势;夏季和冬季分别有82.95%和72.87%的站点呈湿润化趋势。(2)年尺度、春季和秋季干旱站次比及强度均呈增加趋势,春旱站次比与强度增加趋势显著;夏季和冬季干旱站次比和强度均呈下降趋势。(3)年尺度和春季干旱频率在21世纪初均达到最高,年尺度、春季和夏季干旱频率从20世纪90年代到21世纪初均呈增加趋势。(4)春、秋季干旱化趋势与降水量的减少及气温的上升相关,夏、冬季降水量的增加使得夏、冬季呈湿润化趋势。冬季SOI和次年春季干旱相关性极显著,冬季发生拉尼娜事件时,次年春季更易发生干旱。  相似文献   

18.
Regional climate projections are challenging because of large uncertainty particularly stemming from unpredictable, internal variability of the climate system. Here, we examine the internal variability-induced uncertainty in precipitation and surface air temperature (SAT) trends during 2005–2055 over East Asia based on 40 member ensemble projections of the Community Climate System Model Version 3 (CCSM3). The model ensembles are generated from a suite of different atmospheric initial conditions using the same SRES A1B greenhouse gas scenario. We find that projected precipitation trends are subject to considerably larger internal uncertainty and hence have lower confidence, compared to the projected SAT trends in both the boreal winter and summer. Projected SAT trends in winter have relatively higher uncertainty than those in summer. Besides, the lower-level atmospheric circulation has larger uncertainty than that in the mid-level. Based on k-means cluster analysis, we demonstrate that a substantial portion of internally-induced precipitation and SAT trends arises from internal large-scale atmospheric circulation variability. These results highlight the importance of internal climate variability in affecting regional climate projections on multi-decadal timescales.  相似文献   

19.
Precipitation from the previous August to the current June over the last 232 years in Liancheng, China, was reconstructed by a transfer function based on the correlation between tree-ring widths and local meteorological data. The explained variance was 45.3 %, and fluctuations on both annual and decadal scales were captured. Wet periods with precipitation above the 232-year mean occurred from 1777 to 1785, 1802 to 1818, 1844 to 1861, 1889 to 1922 and 1939 to 1960. Dry periods (precipitation below the mean) occurred from 1786 to 1801, 1819 to 1843, 1862 to 1888 and 1923 to 1938. The reconstruction compares well with a tree-ring-based precipitation reconstruction at Mt. Xinglong; both of them showed the well-known severe drought in the late 1920s. The rainfall series also shows highly synchronous decreasing trends since the 1940s, suggesting that precipitation related to the East Asian summer monsoon at these two sites has decreased by large spatial and temporal (decadal) scales. Power spectrum analysis of the reconstruction showed remarkable 21.82-, 3.48-, 3.12-, 3.08- and 2.31-year cycles for the past 232 years; the 22-year cycle corresponds to the solar cycle and is expressed widely in tree ring/precipitation reconstructions on the China Loess Plateau. This may suggest a solar influence on the precipitation variations on the Loess Plateau, although the mechanisms are not well understood.  相似文献   

20.
The summer North Atlantic Oscillation (SNAO), derived from the first EOF of mean sea level pressure over the extratropical North Atlantic in July and August, has a close association with climate variability over the North Atlantic region, and beyond, on both short and long time scales. Recent findings suggested a teleconnection, through the SNAO, linking climate variability over Northern Europe with that of East Asia in the latter part of the twentieth century. Here we investigate the temporal stability of that teleconnection for the last four centuries using 4261 tree-ring width series from 106 sites and, additionally, ten climate reconstructions from East Asia. Our results showed a great potential in using tree-ring width (TRW) data to extend analyses of the SNAO influence on East Asian climate beyond the instrumental period, but preferably with a denser network. The strongest SNAO-TRW associations were found in central East Asia (in and around Mongolia) and on the eastern edge of the Tibetan Plateau. In addition, the analysis showed that the association between the SNAO and East Asian climate over the last 400 years has been variable, both among regions and at specific sites. Moreover, a clear difference in the SNAO-TRW associations was found on two examined time scales, being stronger on longer timescales. Our results indicate that TRW data can be a useful tool to explore the remote influence of the SNAO on East Asian climate in the past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号