首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Oncoprotein E2a/Pbx1 is produced by the t(1;19) chromosomal translocation of human pre-B acute lymphoblastic leukemia. E2a/Pbx1 blocks differentiation of primary myeloid progenitors but, paradoxically, induces apoptosis in established pre-B-cell lines, and no transforming function of E2a/Pbx1 has been reported in cultured lymphoid progenitors. Here, we demonstrate that E2a/Pbx1 induces immortal proliferation of stem cell factor (SCF)-dependent pro-T thymocytes by a mechanism dependent upon both its transactivation and DNA-binding functions. E2a-Pbx1 cooperated with cytokines or activated signaling oncoproteins to induce cell division, as inactivation of conditional E2a/Pbx1 in either factor-dependent pro-T cells or pro-T cells made factor independent by expression of Bcr/Abl resulted in pro-T-cell quiescence, while reactivation of E2a/Pbx1 restored cell division. Infusion of E2a/Pbx1 pro-T cells in mice caused T lymphoblastic leukemia and, unexpectedly, acute myeloid leukemia. The acute lymphoblastic leukemia did not evidence further maturation, suggesting that E2a/Pbx1 establishes an early block in pro-T-cell development that cannot be overcome by marrow or thymic microenvironments. In an E2a/Pbx1 pro-T thymocyte clone that induced only pro-T acute lymphoblastic leukemia, coexpression of Bcr/Abl expanded its leukemic phenotype to include acute myeloid leukemia, suggesting that unique functions of cooperating signaling oncoproteins can influence the lymphoid versus myeloid character of E2a/Pbx1 leukemia and may cooperate with E2a/Pbx1 to dictate the pre-B-cell phenotype of human leukemia containing t(1;19).  相似文献   

2.
3.
4.
A model of hematopoietic development wherein multipotentiality is conserved until segregation of myeloid and lymphoid potential has recently been challenged, proposing that megakaryocyte/erythrocyte (MegE) potential is lost in Flk2/Flt3-expressing early progenitors. Here, we used sensitive in vivo approaches to quantitatively and kinetically assess the MegE potential of hematopoietic stem cells and various Flk2(+) early progenitors and compared it with the MegE potential of downstream committed myeloid and lymphoid progenitors and with their ability to give rise to mature myelomonocytic and lymphoid cells. We demonstrate that Flk2(+) early progenitors retain MegE potential in vivo both at the population and clonal levels. These results indicate that Flk2 expression by early progenitors is not at the expense of full multipotency and support the current model of hematopoietic development with segregation of myeloid and lymphoid lineages from multipotent progenitors.  相似文献   

5.
6.
7.
8.
Lars Bullinger 《The EMBO journal》2016,35(22):2383-2385
An improved understanding of the biology underlying leukemogenesis, including the determination of the cells of leukemia origin, is of great importance as it can have immediate implications on patient treatment and management. The article by Riemke et al ( 2016 ) provides further evidence that a subgroup of acute myeloid leukemia (AML), the most common acute leukemia in adults, might arise from T‐lymphoid progenitor cells. This study not only supports that the lymphoid fate of early T‐cell progenitors is not yet fully stabilized but also shows that under oncogenic conditions, this multilineage plasticity potential of T‐lymphoid progenitors can lead to transdifferentiation into myeloid leukemia. While gene expression profiles suggest that approximately 5% of all AML cases originate from T‐lymphoid progenitors, novel treatment strategies targeting JAK2/STAT3 signaling might open new avenues for this AML cohort.  相似文献   

9.
Hemopoietic lineage switching occurs when leukemic cells, apparently committed to one lineage, change and display the phenotype of another pathway. cDNA representational difference analysis was used to identify myeloid-specific genes that may be associated with an erythroid to myeloid lineage switch involving the murine J2E erythroleukemic cell line. One of the genes isolated (HLS7) is homologous to the novel human oncogene myeloid leukemia factor 1 (MLF1) involved in the t(3;5)(q25.1;q34) translocation associated with acute myeloid leukemia. Enforced expression of HLS7 in J2E cells induced a monoblastoid phenotype, thereby recapitulating the spontaneous erythroid to myeloid lineage switch. HLS7 also inhibited erythropoietin- or chemically-induced differentiation of erythroleukemic cell lines and suppressed development of erythropoietin-responsive colonies in semi-solid culture. However, intracellular signaling activated by erythropoietin was not impeded by ectopic expression of HLS7. In contrast, HLS7 promoted maturation of M1 monoblastoid cells and increased myeloid colony formation in vitro. These data show that HLS7 can influence erythroid/myeloid lineage switching and the development of normal hemopoietic cells.  相似文献   

10.
Radiation exposure induces acute myeloid leukemia (AML) in humans and mice. Recent studies postulated that AML stem cells of spontaneous human AML arise from hematopoietic stem cells. However, other studies support the possibility that short-lived committed progenitors transform into AML stem cells, accompanied by a particular gene mutation. It remains unclear whether AML stem cells are present in radiation-induced AML, and information regarding AML-initiating cells is lacking. In this study, we identified and analyzed AML stem cells of mice with radiation-induced AML. The AML stem cells were identified by transplanting 100 bone marrow cells from mice with radiation-induced AML. We injected 100 cells of each of seven cell populations corresponding to different stages of hematopoietic cell differentiation and compared the latencies of AMLs induced in recipient mice. The identified radiation-induced AML stem cells frequently displayed similarities in both CD antigen and gene expression profiles with normal common myeloid progenitors. The number of common myeloid progenitor-like AML stem cells was significantly increased in mice with radiation-induced AML, but the progeny of common myeloid progenitors was decreased. In addition, analysis of radiation effects on the hematopoietic system showed that common myeloid progenitor cells were extremely radiosensitive and that their numbers remained at low levels for more than 2?months after radiation exposure. Our results suggest that murine radiation-induced AML stem cells arise from radiosensitive cells at a common myeloid progenitor stage.  相似文献   

11.
12.
The t(11;19) translocation gives rise to the MLL-ENL fusion protein and is frequently found in infant myeloid and lymphoid leukemias. Immortalized myeloid cell lines can be generated by expression of MLL-ENL in murine hematopoietic progenitors. By establishing myeloid cell lines with conditional expression of MLL-ENL, we recently demonstrated that MLL-ENL is necessary to maintain immortalization and sustain the expression of a characteristic pattern of Hox genes. The cell lines can be induced to undergo terminal differentiation by inhibition of MLL-ENL expression or by treatment with G-CSF. Expression of Hoxa genes is reduced in cells differentiating as a result of MLL-ENL loss, but is maintained in G-CSF treated cells. Thus, although aberrant maintenance of Hoxa gene expression may play an important role in MLL-ENL induced leukemia, the contribution of this pathway to immortalization is critically dependent on the cytokine environment of the immortalized myeloid cells.  相似文献   

13.
14.
15.
The major myeloid blood cell lineages are generated from hematopoietic stem cells by differentiation through a series of increasingly committed progenitor cells. Precise characterization of intermediate progenitors is important for understanding fundamental differentiation processes and a variety of disease states, including leukemia. Here, we evaluated the functional in vitro and in vivo potentials of a range of prospectively isolated myeloid precursors with differential expression of CD150, Endoglin, and CD41. Our studies revealed a hierarchy of myeloerythroid progenitors with distinct lineage potentials. The global gene expression signatures of these subsets were consistent with their functional capacities, and hierarchical clustering analysis suggested likely lineage relationships. These studies provide valuable tools for understanding myeloid lineage commitment, including isolation of an early erythroid-restricted precursor, and add to existing models of hematopoietic differentiation by suggesting that progenitors of the innate and adaptive immune system can separate late, following the divergence of megakaryocytic/erythroid potential.  相似文献   

16.
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation involving RARα and its fusion partners. For decades, the advent of all-trans retinoic acid (ATRA) synergized with arsenic trioxide (As2O3) has turned most APL from highly fatal to highly curable. TBLR1-RARα (TR) is the tenth fusion gene of APL identified in our previous study, with its oncogenic role in the pathogenesis of APL not wholly unraveled. In this study, we found the expression of TR in mouse hematopoietic progenitors induces blockade of differentiation with enhanced proliferative capacity in vitro. A novel murine transplantable leukemia model was then established by expressing TR fusion gene in lineage-negative bone marrow mononuclear cells. Characteristics of primary TR mice revealed a rapid onset of aggressive leukemia with bleeding diathesis, which recapitulates human APL more accurately than other models. Despite the in vitro sensitivity to ATRA-induced cell differentiation, neither ATRA monotherapy nor combination with As2O3 confers survival benefit to TR mice, consistent with poor clinical outcome of APL patients with TR fusion gene. Based on histone deacetylation phenotypes implied by bioinformatic analysis, HDAC inhibitors demonstrated significant survival superiority in the survival of TR mice, yielding insights into clinical efficacy against rare types of APL.Subject terms: Acute myeloid leukaemia, Acute myeloid leukaemia  相似文献   

17.
18.
19.
FLT3/FLK2, a member of the receptor tyrosine kinase family, plays a critical role in maintenance of hematopoietic homeostasis, and the constitutively active form of the FLT3 mutation is one of the most common genetic abnormalities in acute myelogenous leukemia. In murine hematopoiesis, Flt3 is not expressed in self-renewing hematopoietic stem cells, but its expression is restricted to the multipotent and the lymphoid progenitor stages at which cells are incapable of self-renewal. We extensively analyzed the expression of Flt3 in human (h) hematopoiesis. Strikingly, in both the bone marrow and the cord blood, the human hematopoietic stem cell population capable of long-term reconstitution in xenogeneic hosts uniformly expressed Flt3. Furthermore, human Flt3 is expressed not only in early lymphoid progenitors, but also in progenitors continuously along the granulocyte/macrophage pathway, including the common myeloid progenitor and the granulocyte/macrophage progenitor. We further found that human Flt3 signaling prevents stem and progenitors from spontaneous apoptotic cell death at least through up-regulating Mcl-1, an indispensable survival factor for hematopoiesis. Thus, the distribution of Flt3 expression is considerably different in human and mouse hematopoiesis, and human FLT3 signaling might play an important role in cell survival, especially at stem and progenitor cells that are critical cellular targets for acute myelogenous leukemia transformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号