首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
C.M. Brosseau  G. Pirianov  K.W. Colston 《Steroids》2010,75(13-14):1082-1088
It has been previously demonstrated that 1,25 dihydroxyvitamin D3 (1,25-D3) exerts inhibitory effects in breast cancer cells. The aim of this study was to determine whether mitogen-activated protein kinase (MAPK) pathways are associated with 1,25-D3-induced cell death in breast cancer. We used three breast cell lines which have different sensitivities to 1,25-D3 treatment. Non-malignant MCF-12A cells were more sensitive to 1,25-D3 treatment than malignant MCF-7 cells (growth inhibition IC50 75 nM vs. 100 nM, p < 0.001) while malignant MDA-MB-231 cells were resistant. Moreover, 1,25-D3-induced apoptosis was caspase-dependent in MCF-12A cells and caspase-independent in MCF-7 cells. Following MAPK activation analysis, we found a significant activation of JNK in MCF-12A cells and malignant MCF-7 cells in response to 1,25-D3 treatment. Furthermore, 1,25-D3 treatment stimulated p38 activity in MCF-12A cells and in MCF-7 cells. ERK1/2 activity was unaffected by 1,25-D3 treatment in all breast cells. Importantly, no increased MAPK activity was observed in MDA-MB-231 breast cancer cells which displayed resistance to 1,25-D3-induced apoptosis. Utilising specific pharmacological inhibitors of JNK and p38, it was demonstrated that MCF-12A and MCF-7 cells were protected from death induced by 1,25-D3. These results implicate JNK and p38 signalling in 1,25-D3-induced cancer breast cell death.  相似文献   

2.
Neo-tanshinlactone (NTL) a natural product is known for its specificity and selectivity towards the breast cancer cells. By NTL D-ring modification approach, 13 new analogues were synthesized (1A1M). Among them 1J showed the best anticancer activity in MCF-7 (ER+, PR+/?, HER2?), SKBR3 (ER?, PR?, HER2+) and MDA-MB-231 (ER?, PR?, HER2?) cells lines with IC50 value 11.98 nM, 23.71 nM, and 62.91 nM respectively. 1J showed minor grove binding interaction with DNA at AT-rich region and induced DNA double strand breaks (DDSBs). This had triggered several key molecular events involving, activation of ATM, Chk2 and p53, reduction in mitochondrial potential (Δψm) leading to caspase-3 and PARP cleavage mediated apoptosis. These results along with other biochemical studies strongly suggest that novel NTL analogue 1J caused DNA cleavage mediated apoptosis in the breast cancer cells and this may serve as potential lead for future breast cancer treatment.  相似文献   

3.
The outcomes of breast cancer patients are still poor although new compounds have recently been introduced into the clinic. Therefore, novel chemical approaches are required. In the present study, palladium(II) and corresponding platinum(II) complexes containing bis(2-pyridylmethyl)amine (bpma) and saccharine were synthesized and tested against human breast cancer cell lines, MCF-7 and MDA-MB-231, in vitro. Cytotoxicity was first screened by the MTT assay and the results were further confirmed by the ATP assay. The palladium complexes 1 and 3 yielded stronger cytotoxicity than the corresponding platinum complexes 2 and 4 at the same doses. The palladium complex 3 was found to be the most cytotoxic one. Therefore, a more comprehensive study was carried out with this complex only. The mode of cell death was determined morphologically under fluorescent microscope and biochemically with detection of active caspase-3 and PARP cleavage by Western blot. Changes in apoptosis-related gene expressions were measured with qPCR. It was demonstrated that complex 3 caused cell death by apoptosis determined by fluorescence imaging and Western blot. As a sign of apoptosis, PARP was cleaved in both of the cell lines. In addition, caspase-3 was cleaved in MDA-MB-231 cells while this cleavage was not observed in MCF-7. The results show that the complex 3 is a promising anti-cancer compound against breast cancer with an IC50 value of 3.9 μM for MCF-7 and 4.2 μM for MDA-MB-231 cells, which warrants further animal experiments.  相似文献   

4.
Two new diastereomeric lignan amides (4 and 5) serving as dimeric caffeic acid-l-DOPA hybrids were synthesized. The synthesis involved the FeCl3-mediated phenol oxidative coupling of methyl caffeate to afford trans-diester 1a as a mixture of enantiomers, protection of the catechol units, regioselective saponification, coupling with a suitably protected l-DOPA derivative, separation of the two diastereomers thus obtained by flash column chromatography and finally global chemoselective deprotection of the catechol units. The effect of hybrids 4 and 5 and related compounds on the proliferation of two breast cancer cell lines with different metastatic potential and estrogen receptor status (MDA-MB-231 and MCF-7) and of one epithelial lung cancer cell line, namely A-549, was evaluated for concentrations ranging from 1 to 256 μM and periods of treatment of 24, 48 and 72 h. Both hybrids showed interesting and almost equipotent antiproliferative activities (IC50 64–70 μM) for the MDA-MB-231 cell line after 24–48 h of treatment, but they were more selective and much more potent (IC50 4–16 μM) for the MCF-7 cells after 48 h of treatment. The highest activity for both hybrids and both breast cancer lines was observed after 72 h of treatment (IC50 1–2 μM), probably as the result of slow hydrolysis of their methyl ester functions.  相似文献   

5.
Fifteen novel 2-substituted isoflavenes were synthesised via nucleophilic addition to isoflavylium salts. Twelve of the newly synthesised isoflavenes, along with the unsubstituted parent isoflavene, were tested in cell viability assays against the SHEP neuroblastoma and MDA-MB-231 breast adenocarcinoma cell lines. While the 2-substituted isoflavenes displayed a range of anti-proliferative activities, in most cases they were less active that the unsubstituted isoflavene (IC50 = 9.9 μM vs SHEP; IC50 = 33 μM vs MDA-MB-231). However, compound 7f, derived from the reaction between isoflavylium salt 5 and para-methoxyacetophenone, showed improved anti-proliferative activity against breast cancer cells (IC50 = 7.6 μM). Furthermore, compound 7f, as well as analogues 7a, 7c, 11d and 14, inhibited the production of interleukin-6 in LPS-activated RAW 264.7 cells.  相似文献   

6.
A series of (2E,2′E)-1,1′-(3-hydroxy-5-methylbiphenyl-2,6-diyl)-bis(3-pheylprop-2-ene-1-ones (533) were prepared by the reaction of 1,3-diacetyl biphenyls (14) with different aldehydes in presence of catalytic amount of solid KOH in ethanol in excellent yields. The compounds were evaluated for anticancer activity against human breast cancer MCF-7 (estrogen responsive proliferative breast cancer model) and MDA-MB-231 (estrogen independent aggressive breast cancer model) cell lines, HeLa (cervical cancer) cell line, and human embryonic kidney (HEK-293) cells. Most of the compounds preferentially inhibited the growth of the aggressive human breast cancer cell lines, MDA-MB-231 in the range of 4.4–30 μM. The two compounds 9 and 29 proved to be better anticancer agents than the standard drug tamoxifen against the MDA-MB-231 cell lines. Mode of action of these compounds was established to be apoptosis, cell cycle arrest and loss of mitochondrial membrane potential.  相似文献   

7.
Coumarins are naturally-occurring compounds that have attracted considerable interest due to their numerous biological activities depending on their pattern of substitution on the coumarin molecule. In this present investigation, we synthesized 3-(4-nitrophenyl)coumarin derivatives (9a–e) and evaluated their in vitro cytotoxic effect on human lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cell lines for 48 h using crystal violet dye binding assay. Cytotoxic effects of the most active compound on normal human lung (MRC-9) and breast (MCF-10A) cell lines, cell cycle analysis using flow cytometry and mitochondrial membrane potential (MMP) using Tetramethyl Rhodamine Methyl Ester (TMRM; rhodamine-123) fluorescent dye were also examined. Among the compounds that were evaluated, 9c showed cytotoxic effect (active), caused significant cells arrest (p < 0.05) in G0/G1 and S phases of cell cycle and loss of MMP in A459, MDA-MB-231 and PC3 cell lines. Additionally, the cytotoxic effect of 9c was compared to reference drugs (Coumarin and Docetaxel) for comparative study. These results further demonstrate that acetoxy group at C-7 and C-8 positions of 9c are responsible for the observed cytotoxic effect in these cancer cell lines.  相似文献   

8.
Lovastatin (LOV) and docosahexaenoic acid (DHA), besides improving cardiovascular functions, are also known for their anticancer activities. However, use of these compounds for treating or preventing cancer is limited because of their efficacies. The approach pursued involved chemical linkage of these two chemotypes. A lovastatin–docosahexaenoate (LOV–DHA) conjugate was prepared and tested against selected breast tumor cells lines with differential expression of estrogen receptors (ER) and Heregulin-2 (Her-2). The LOV–DHA conjugate exhibited superior cytotoxic effects against ER/Her-2 cell lines (MDA-MB-231 and MDA-MB-468), which were not observed with DHA or lovastatin alone, or in combination. Lovastatin supplementation arrested cells in the G0/G1 phase and enhanced expression levels of p21, whereas the conjugate did not demonstrate cell cycle arrest nor increased p21 expression. The LOV–DHA conjugate induced significant (P < 0.05) apoptosis as low as 1 μM, whereas DHA and lovastatin were ineffective at this concentration. The growth inhibitory effects of lovastatin were reversed by the addition of mevalonate, whereas mevalonate had no effect on the LOV–DHA conjugate-induced growth inhibition in MDA-MB-231 cells. Furthermore, the LOV–DHA conjugates were stable in mouse serum and intracellularly in MDA-MB-231 cells. These data suggest that the LOV–DHA conjugate mediated its effects through a HMG-CoA reductase-independent pathway and exerted significantly (P < 0.05) higher anticancer effects in breast cancer cells than lovastatin or DHA alone.  相似文献   

9.
Lysophosphatidylethanolamine (LPE) is a lyso-type metabolite of phosphatidylethanolamine (a plasma membrane component), and its intracellular Ca2 + ([Ca2 +]i) increasing actions may be mediated through G-protein-coupled receptor (GPCR). However, GPCRs for lysophosphatidic acid (LPA), a structurally similar representative lipid mediator, have not been implicated in LPE-mediated activities in SK-OV3 or OVCAR-3 ovarian cancer cells or in receptor over-expression systems. In the present study, LPE-induced [Ca2 +]i increase was observed in MDA-MB-231 cells but not in other breast cancer cell lines. In addition, LPE- and LPA-induced responses showed homologous and heterologous desensitization. Furthermore, VPC32183 and Ki16425 (antagonists of LPA1 and LPA3) inhibited LPE-induced [Ca2 +]i increases, and knockdown of LPA1 by transfection with LPA1 siRNA completely inhibited LPE-induced [Ca2 +]i increases. Furthermore, the involvement of CD97 (an adhesion GPCR) in the action of LPA1 in MDA-MB-231 cells was demonstrated by siRNA transfection. Pertussis toxin (a specific inhibitor of Gi/o proteins), edelfosine (an inhibitor of phospholipase C), or 2-APB (an inhibitor of IP3 receptor) completely inhibited LPE-induced [Ca2 +]i increases, whereas HA130, an inhibitor of autotaxin/lysophospholipase D, did not. Therefore, LPE is supposed to act on LPA1-CD97/Gi/o proteins/phospholipase C/IP3/Ca2 + rise in MDA-MB-231 breast cancer cells.  相似文献   

10.
A series of 18 heterocyclic cyclohexanone analogues of curcumin have been synthesised and screened for their activity in both adherent and non-adherent cancer cell models. Cytotoxicity towards MBA-MB-231 breast cancer cells, as well as ability to inhibit NF-κB transactivation in non-adherent K562 leukemia cells were investigated. Three of these analogues 3,5-bis(pyridine-4-yl)-1-methylpiperidin-4-one B1, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidin-4-one B10, and 8-methyl-2,4-bis((pyridine-4-yl)methylene)-8-aza-bicyclo[3.2.1]octan-3-one C1 showed potent cytotoxicity towards MBA-MB-231, MDA-MB-468, and SkBr3 cell lines with EC50 values below 1 μM and inhibition of NF-κB activation below 7.5 μM. The lead drug candidate, B10, was also able to cause 43% of MDA-MB-231 cells to undergo apoptosis after 18 h. This level of activity warrants further investigation for the treatment of ER-negative breast cancer and/or chronic myelogenous leukemia as prototypical cellular models for solid and liquid tumors.  相似文献   

11.
Acanthopanax sessiliflorus, a small woody shrub has traditionally been referred to have anticancer activity, but it has not been scientifically explored so far. Therefore, to investigate the anticancer effects of A. sessiliflorus stem bark extracts (ASSBE), MDA-MB-231 and MCF-7 human breast cancer cells were treated with one of its bioactive fractions, n-hexane (ASSBE-nHF). Cytotoxicity (24 h) was determined by MTT assay and antiproliferative effect was assessed by counting cell numbers after 72 h treatment using hemocytometer. The role of ASSBE-nHF on apoptosis was analysed by annexin V-FITC/PI, Hoechst 33342 staining, DNA fragmentation pattern and immunoblotting of apoptosis markers. For the assay of enhanced production of ROS and mitochondrial membrane depolarization, specific stains such as DCFH-DA and JC-1 were used, respectively. To understand the mode of action of ASSBE-nHF on MCF-7 cells, cells were pre-treated with antioxidant, n-acetylcysteine. The hexane fraction of ASSBE showed maximum activity towards human breast cancer cells compared to other two fractions at a minimal concentration of 50 μg/ml. The annexin V-FITC/PI, Hoechst 33342 staining, DNA fragmentation and immunoblotting assays showed that ASSBE-nHF induces non-apoptotic cell death in MCF-7 and MDA-MB-231 cells. ASSBE-nHF significantly increased the production of ROS and decreased the mitochondrial membrane potential (MMP) in MCF-7 cells. Similarly, it decreased the MMP in MDA-MB-231 cells, but had no effect on ROS production. Further, the cytotoxic effect of ASSBE-nHF in MCF-7 cells was not significantly reversed even in the presence of n-acetylcysteine, an antioxidant. These findings revealed that ASSBE-nHF induces non-apoptotic cell death via mitochondria associated with both ROS dependent and independent pathways in human breast cancer cells.  相似文献   

12.
Voltage-gated Na+ channels (VGSCs), predominantly the ‘neonatal’ splice form of Nav1.5 (nNav1.5), are upregulated in metastatic breast cancer (BCa) and potentiate metastatic cell behaviours. VGSCs comprise one pore-forming α subunit and one or more β subunits. The latter modulate VGSC expression and gating, and can function as cell adhesion molecules of the immunoglobulin superfamily. The aims of this study were (1) to determine which β subunits were expressed in weakly metastatic MCF-7 and strongly metastatic MDA-MB-231 human BCa cells, and (2) to investigate the possible role of β subunits in adhesion and migration. In both cell lines, the β subunit mRNA expression profile was SCN1B (encoding β1) ? SCN4B (encoding β4) > SCN2B (encoding β2); SCN3B (encoding β3) was not detected. MCF-7 cells had much higher levels of all β subunit mRNAs than MDA-MB-231 cells, and β1 mRNA was the most abundant. Similarly, β1 protein was strongly expressed in MCF-7 and barely detectable in MDA-MB-231 cells. In MCF-7 cells transfected with siRNA targeting β1, adhesion was reduced by 35%, while migration was increased by 121%. The increase in migration was reversed by tetrodotoxin (TTX). In addition, levels of nNav1.5 mRNA and protein were increased following β1 down-regulation. Stable expression of β1 in MDA-MB-231 cells increased functional VGSC activity, process length and adhesion, and reduced lateral motility and proliferation. We conclude that β1 is a novel cell adhesion molecule in BCa cells and can control VGSC (nNav1.5) expression and, concomitantly, cellular migration.  相似文献   

13.
The anti-growth effect of a palladium(II) complex—[PdCl(terpy)](sac)·2H2O] (sac = saccharinate, and terpy = 2,2′:6′,2″-terpyridine)—was tested against human breast cancer cell lines, MCF-7 and MDA-MB-231. Anti-growth effect was assayed by the MTT and ATP viability assays in vitro and then confirmed on Balb/c mice in vivo. The mode of cell death was determined by both histological and biochemical methods. The Pd(II) complex had anti-growth effect on a dose dependent manner in vitro and in vivo. The cells died by apoptosis as evidenced by the pyknotic nucleus, cleavage of poly-(ADP-ribose) polymerase (PARP) and induction of active caspase-3. These results suggest that the palladium(II) saccharinate complex of terpyridine represents a potentially active novel complex for the breast cancer treatment, thus warrants further studies.  相似文献   

14.
A series of new nopinone-based thiosemicarbazone derivatives were designed and synthesized as potent anticancer agents. All these compounds were identified by 1H NMR, 13C NMR, HR-MS spectra analyses. In the in vitro anticancer activity, most derivatives showed considerable cytotoxic activity against three human cancer cell lines (MDA-MB-231, SMMC-7721 and Hela). Among them, compound 4i exhibited most potent antitumor activity against three cancer cell lines with the IC50 values of 2.79 ± 0.38, 2.64 ± 0.17 and 3.64 ± 0.13 μM, respectively. Furthermore, the cell cycle analysis indicated that compound 4i caused cell cycle arrest of MDA-MB-231 cells at G2/M phase. The Annexin V-FITC/7-AAD dual staining assay also revealed that compound 4i induced the early apoptosis of MDA-MB-231 cells.  相似文献   

15.
A series of new quinoline derivatives of ursolic acid were designed and synthesized in an attempt to develop potential anticancer agents. The structures of these compounds were identified by 1H NMR, 13C NMR, IR and ESI-MS spectra analysis. The target compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (MDA-MB-231, Hela and SMMC-7721). From the results, compounds 3ad displayed significant antitumor activity against three cancer cell lines. Especially, compound 3b was found to be the most potent derivative with IC50 values of 0.61 ± 0.07, 0.36 ± 0.05, 12.49 ± 0.08 μM against MDA-MB-231, HeLa and SMMC-7721 cells, respectively, stronger than positive control etoposide. Furthermore, the Annexin V-FITC/PI dual staining assay revealed that compound 3b could significantly induce the apoptosis of MDA-MB-231 cells in a dose-dependent manner. The cell cycle analysis also indicated that compound 3b could cause cell cycle arrest of MDA-MB-231 cells at G0/G1 phase.  相似文献   

16.
New chromeno-annulated cis-fused pyrano[3,4-c]benzopyran and naphtho pyran derivatives have been synthesized by domino aldol-type reaction/hetero Diels–Alder reaction generated from o-quinone methide in situ from 7-O-prenyl derivatives of 8-formyl-2,3-disubstituted chromenones with resorcinols/naphthols in the presence of 20 mol % ethylenediamine diacetate (EDDA), triethylamine (2 mL) as co-catalyst in CH3CN under reflux conditions in good yields. The structures were established based on spectroscopic data, and further confirmed by X-ray diffraction analysis. The results showed that compounds 4h and 4j exhibited very potent cytotoxicity against human cervical cancer cell line (HeLa). Compound 4h displayed good inhibitory activity against both breast cancer cell lines, MDA-MB-231 and MCF-7. Further, the compound 4i exhibited good cytotoxicity against only MDA-MB-231, and compound 4j showed promising activity against human lung cancer cell line, A549 with IC50 value of 2.53 ± 0.07 μM, which was comparable to the standard doxorubicin (IC50 = 1.21 ± 0.1 μM).  相似文献   

17.
American ginseng (Panax quinquefolius L.) produces triterpenoid saponins, ginsenosides, that possess mild fungitoxic activity toward some common ginseng leaf pathogens. However, numerous oomycete root pathogens of ginseng, most notably Pythium irregulare Buisman, are able to partially deglycosylate 20 (S)-protopanaxadiol ginsenosides Rb1, Rd and gypenoside XVII via extracellular glycosidases, leading to a common product, ginsenoside F2. Conversion of the common 20 (S)-protopanaxadiols into F2 requires both β (1  6) and β (1  2) glucosidase activity. In the present study, the ability of nine distinct isolates of P. irregulare, as well as a P. ultimum Trow isolate and two isolates of Trichoderma hamatum (Bonord.) Bainier, to deglycosylate 20 (S)-protopanaxadiols, in vitro was examined. The pathogenicity of each isolate was also examined by scoring the severity of disease symptoms caused by each in separate inoculations of one- and two-year old ginseng seedlings. Disease severity was scored using a disease severity index, as well as by taking Fv/Fm measurements of leaves during a 14-day infection period. Based on these measurements, it was concluded that (1) the use of direct Fv/Fm measurements correlates strongly with observations of disease severity (R2 = 0.79), and that (2) the pathogenicity of P. irregulare isolates correlates with their ability to deglycosylate ginsenosides (R2 = 0.57). These results further support the hypothesis that the pathogenicity of P. irregulare on ginseng roots is dependent, in part, on the ability of this organism to deglycosylate ginsenosides.  相似文献   

18.
Small cyclic peptides exhibiting potent biological activity have great potential for anticancer therapy. An antiproliferative cyclic octapeptide, cyclosaplin was purified from somatic seedlings of Santalum album L. (sandalwood) using gel filtration and RP-HPLC separation process. The molecular mass of purified peptide was found to be 858 Da and the sequence was determined by MALDI-ToF-PSD-MS as ‘RLGDGCTR’ (cyclic). The cytotoxic activity of the peptide was tested against human breast cancer (MDA-MB-231) cell line in a dose and time-dependent manner. The purified peptide exhibited significant antiproliferative activity with an IC50 2.06 μg/mL. In a mechanistic approach, apoptosis was observed in differential microscopic studies for peptide treated MDA-MB-231 cells, which was further confirmed by mitochondrial membrane potential, DNA fragmentation assay, cell cycle analysis and caspase 3 activities. The modeling and docking experiments revealed strong affinity (kcal/mol) of peptide toward EGFR and procaspase 3. The co-localization studies revealed that the peptide sensitizes MDA-MB-231 cells by possibly binding to EGFR and induces apoptosis. This unique cyclic octapeptide revealed to be a favorable candidate for development of anticancer agents.  相似文献   

19.
Based on previous SAR studies on N-benzylindole and barbituric acid hybrid molecules, we have synthesized a series of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs (3ai) and evaluated them for their in vitro growth inhibition and cytotoxicity against a panel of 60 human tumor cell lines. Compounds 3c, 3d, 3f and 3g were identified as highly potent anti-proliferative compounds against ovarian, renal and breast cancer cell lines with GI50 values in low the nanomolar range. The 4-methoxy-N-benzyl analog (3d) was the most active compound with GI50 values of 20 nM and 40 nM against OVCAR-5 ovarian cancer cells and MDA-MB-468 breast cancer cells, respectively. Two other analogs, 3c (the 4-methyl-N-benzyl analog) and 3g (the 4-fluoro-N-benzyl analog) exhibited equimolar potency against MDA-MB-468 cells GI50 = 30 nM). Analog 3f (the 4-chloro-N-benzyl analog) exhibited a GI50 value of 40 nM against renal cancer cell line A498. These results suggest that aromatic substituted N-benzylindole dimethylbarbituric acid hybrids may have potential for development as clinical candidates to treat a variety of solid tumors.  相似文献   

20.
In this study, we synthesized a series of trans-indole-3-acrylamide derivatives (3ak) and investigated their activity for inhibition of cell proliferation against five human cancer cell lines (HeLa, MCF7, MDA-MB-231, Raji and HL-60) by MTT assay. Compound 3e showed significant antiproliferative activity against both the Raji and HL-60 cell lines with IC50 values of 9.5 and 5.1 μM, respectively. Compound 3e also exhibited moderate inhibitory activity on tubulin polymerization (IC50 = 17 μM). Flow cytometric analysis of cultured cells treated with 3e also demonstrated that the compound caused cell cycle arrest at the G2/M phase in HL-60 and HeLa cells. Moreover, 3e, the most active compound, caused an apoptotic cell death through the activation of caspase-3. Docking simulations suggested that 3e binds to the colchicine site of tubulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号