首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several epidemiological studies have demonstrated that vitamin E is a chemopreventative agent for prostate cancer. alpha-Tocopheryl succinate (VES), a derivative of vitamin E, effectively modulates prostate cancer cell growth. However, little is known about the mechanisms regarding this action. Here we show that VES causes human prostate cancer cell LNCaP arrest at G1 phase. This effect is accomplished through VES significantly decreasing expression of the cell cycle regulatory proteins cyclin D1, D3, and E, cdk2 and 4, but not cdk6. Furthermore, VES reduces cdk4 kinase activity, Rb phosphorylation, and cyclin E mRNA expression. Recently there is increasing interest in the protective effect of the VES and selenium combination on prostate cancer. Here we show that VES and selenium work through different mechanisms to exert their inhibitory effects on prostate cancer cells. Taken together, our studies suggest that VES-mediated prostate cancer cell G1/S arrest is a consequence of the regulation of multiple molecules of the cell cycle regulatory machinery.  相似文献   

2.
WW domain-containing oxidoreductase (WWOX) has been reported to be a tumor suppressor in multiple cancers, including prostate cancer. WWOX can induce apoptotic responses to inhibit tumor progression, and the other mechanisms of WWOX in tumor suppression have also been reported recently. In this study, we found significant down-regulation of WWOX in prostate cancer specimens and prostate cancer cell lines compared with the normal controls. In addition, an ectopically increased WWOX expression repressed tumor progression both in vitro and in vivo. Interestingly, overexpression of WWOX in 22Rv1 cells led to cell cycle arrest in the G1 phase but did not affect sub-G1 in flow cytometry. GFP-WWOX overexpressed 22Rv1 cells were shown to inhibit cell cycle progression into mitosis under nocodazole treatment in flow cytometry, immunoblotting and GFP fluorescence. Further, cyclin D1 but not apoptosis correlated genes were down-regulated by WWOX both in vitro and in vivo. Restoration of cyclin D1 in the WWOX-overexpressed 22Rv1 cells could abolish the WWOX-mediated tumor repression. In addition, WWOX impair c-Jun-mediated cyclin D1 promoter activity. These results suggest that WWOX inhibits prostate cancer progression through negatively regulating cyclin D1 in cell cycle lead to G1 arrest. In summary, our data reveal a novel mechanism of WWOX in tumor suppression.  相似文献   

3.
WW domain-containing oxidoreductase (WWOX) has been reported to be a tumor suppressor in multiple cancers, including prostate cancer. WWOX can induce apoptotic responses to inhibit tumor progression, and the other mechanisms of WWOX in tumor suppression have also been reported recently. In this study, we found significant down-regulation of WWOX in prostate cancer specimens and prostate cancer cell lines compared with the normal controls. In addition, an ectopically increased WWOX expression repressed tumor progression both in vitro and in vivo. Interestingly, overexpression of WWOX in 22Rv1 cells led to cell cycle arrest in the G1 phase but did not affect sub-G1 in flow cytometry. GFP-WWOX overexpressed 22Rv1 cells were shown to inhibit cell cycle progression into mitosis under nocodazole treatment in flow cytometry, immunoblotting and GFP fluorescence. Further, cyclin D1 but not apoptosis correlated genes were down-regulated by WWOX both in vitro and in vivo. Restoration of cyclin D1 in the WWOX-overexpressed 22Rv1 cells could abolish the WWOX-mediated tumor repression. In addition, WWOX impair c-Jun-mediated cyclin D1 promoter activity. These results suggest that WWOX inhibits prostate cancer progression through negatively regulating cyclin D1 in cell cycle lead to G1 arrest. In summary, our data reveal a novel mechanism of WWOX in tumor suppression.  相似文献   

4.
We have recently shown that curcumin induces apoptosis in prostate cancer cells through Bax translocation to mitochondria and caspase activation, and enhances the therapeutic potential of TRAIL. However, the molecular mechanisms by which it causes growth arrest are not well-understood. We studied the molecular mechanism of curcumin-induced cell cycle arrest in prostate cancer androgen-sensitive LNCaP and androgen-insensitive PC-3 cells. Treatment of both cell lines with curcumin resulted in cell cycle arrest at G1/S phase and that this cell cycle arrest is followed by the induction of apoptosis. Curcumin induced the expression of cyclin-dependent kinase (CDK) inhibitors p16/INK4a, p21/WAF1/CIP1 and p27/KIP1, and inhibited the expression of cyclin E and cyclin D1, and hyperphosphorylation of retinoblastoma (Rb) protein. Lactacystin, an inhibitor of 26 proteasome, blocks curcumin-induced down-regulation of cyclin D1 and cyclin E proteins, suggesting their regulation at level of posttranslation. The suppression of cyclin D1 and cyclin E by curcumin may inhibit CDK-mediated phosphorylation of pRb protein. The inhibition of p21/WAF1/CIP1 by siRNA blocks curcumin-induced apoptosis, thus establishing a link between cell cycle and apoptosis. These effects of curcumin result in the proliferation arrest and disruption of cell cycle control leading to apoptosis. Our study suggests that curcumin can be developed as a chemopreventive agent for human prostate cancer.  相似文献   

5.
Prostate cancer is the most predominant cancer in men and related death rate increases every year. Till date, there is no effective therapy for androgen independent prostate cancer. Previous studies reported that aged garlic extract suppresses cancer growth. In the present study, diallyl disulfide [DADS], oil soluble organosulfur compound of garlic, was studied for its antiproliferative and induction of cell cycle arrest on prostate cancer cells in vitro. The suppression of cell growth was assessed by MTT assay. Induction of cell cycle arrest was assessed and confirmed by propidium iodide staining in flowcytometric analysis and western blotting analysis of major cell cycle regulator proteins. The results showed that DADS inhibited the growth of prostate cancer cells in a dose dependent manner, compared to the control. At 25 μM and 40 μM concentrations, DADS induced cell cycle arrest at G2/M transition in PC-3 cells. Western blotting analysis of cyclin A, B1 and cyclin dependent kinase 1 [CDK1] revealed that DADS inhibited the cell cycle by downregulating CDK1 expression. It is concluded that DADS, inhibits proliferation of prostate cancer cells through cell cycle arrest. Dose dependent effect of DADS on PC-3 cell line was observed in the present study.  相似文献   

6.
Mevastatin arrested HCT116 colon cancer cells at the G1/S transition and increased cellular levels of p21CIP1/WAF1. p21-deficient colon cancer cells continued to proliferate in the presence of mevastatin. Although p21 was necessary for the G1/S block, the G1 cyclin-dependent kinases (Cdks) cyclin E-Cdk2 and cyclin D-Cdk4 remained active. Despite the activity of the G1 Cdks the retinoblastoma protein was hypophosphorylated due to unknown mechanisms that were dependent on the p21 protein. The resulting decrease in cyclin A mRNA and protein led to a decrease in the activity of cyclin A-Cdk2. Therefore, although p21 was required for the G1/S arrest of HCT116 colon cancer cells by mevastatin, its mode of action was more complicated than the simple formation of a physical complex with cyclin-Cdk2. This mechanism of inhibition is different from that seen in prostate cancer cells (Ukomadu, C., and Dutta, A. (2003) J. Biol. Chem. 278, 4840-4846) where the activating phosphorylation of cyclin E-Cdk2 is suppressed and p21 is not required, suggesting the existence of cell line-specific differences in the mechanism by which statins arrest the cell cycle.  相似文献   

7.
Iejimalide B, a marine macrolide, causes growth inhibition in a variety of cancer cell lines at nanomolar concentrations. We have investigated the effects of Iejimalide B on cell cycle kinetics and apoptosis in the p53+/AR+ LNCaP and p53-/AR- PC-3 prostate cancer cell lines. Iejimalide B, has a dose and time dependent effect on cell number (as measured by crystal violet assay) in both cell lines. In LNCaP cells Iejimalide B induces a dose dependent G0/G1 arrest and apoptosis at 48 h (as measured by Apo-BrdU staining). In contrast, Iejimalide B initially induces G0/G1 arrest followed by S phase arrest but does not induce apoptosis in PC-3 cells. qPCR and Western analysis suggests that Iejimalide B modulates the steady state level of many gene products associated with cell cycle (including cyclins D, E, and B and p21(waf1/cip1)) and cell death (including survivin, p21B and BNIP3L) in LNCaP cells. In PC-3 cells Iejimalide B induces the expression of p21(waf1/cip1), down regulates the expression of cyclin A, and does not modulate the expression of the genes associated with cell death. Comparison of the effects of Iejimalide B on the two cell lines suggests that Iejimalide B induces cell cycle arrest by two different mechanisms and that the induction of apoptosis in LNCaP cells is p53-dependent.  相似文献   

8.
CD437, a novel retinoid, causes cell cycle arrest and apoptosis in a number of cancer cells including human breast carcinoma (HBC) by utilizing an undefined retinoic acid receptor/retinoid X receptor-independent mechanism. To delineate mediators of CD437 signaling, we utilized a random antisense-dependent functional knockout genetic approach. We identified a cDNA that encodes approximately 130-kDa HBC cell perinuclear protein (termed CARP-1). Treatments with CD437 or chemotherapeutic agent adriamycin, as well as serum deprivation of HBC cells, stimulate CARP-1 expression. Reduced levels of CARP-1 result in inhibition of apoptosis by CD437 or adriamycin, whereas increased expression of CARP-1 causes elevated levels of cyclin-dependent kinase inhibitor p21WAF1/CIP1 and apoptosis. CARP-1 interacts with 14-3-3 protein as well as causes reduced expression of cell cycle regulatory genes including c-Myc and cyclin B1. Loss of c-Myc sensitizes cells to apoptosis by CARP-1, whereas expression of c-Myc or 14-3-3 inhibits CARP-1-dependent apoptosis. Thus, apoptosis induction by CARP-1 involves sequestration of 14-3-3 and CARP-1-mediated altered expression of multiple cell cycle regulatory genes. Identification of CARP-1 as a key mediator of signaling by CD437 or adriamycin allows for delineation of pathways that, in turn, may prove beneficial for design and targeting of novel antitumor agents.  相似文献   

9.
Estrogen-induced progression through G1 phase of the cell cycle is preceded by increased expression of the G1-phase regulatory proteins c-Myc and cyclin D1. To investigate the potential contribution of these proteins to estrogen action, we derived clonal MCF-7 breast cancer cell lines in which c-Myc or cyclin D1 was expressed under the control of the metal-inducible metallothionein promoter. Inducible expression of either c-Myc or cyclin D1 was sufficient for S-phase entry in cells previously arrested in G1 phase by pretreatment with ICI 182780, a potent estrogen antagonist. c-Myc expression was not accompanied by increased cyclin D1 expression or Cdk4 activation, nor was cyclin D1 induction accompanied by increases in c-Myc. Expression of c-Myc or cyclin D1 was sufficient to activate cyclin E-Cdk2 by promoting the formation of high-molecular-weight complexes lacking the cyclin-dependent kinase inhibitor p21, as has been described, following estrogen treatment. Interestingly, this was accompanied by an association between active cyclin E-Cdk2 complexes and hyperphosphorylated p130, identifying a previously undefined role for p130 in estrogen action. These data provide evidence for distinct c-Myc and cyclin D1 pathways in estrogen-induced mitogenesis which converge on or prior to the formation of active cyclin E-Cdk2-p130 complexes and loss of inactive cyclin E-Cdk2-p21 complexes, indicating a physiologically relevant role for the cyclin E binding motifs shared by p130 and p21.  相似文献   

10.
Honokiol (HNK), a highly promising phytochemical derived from Magnolia officinalis plant, exhibits in vitro and in vivo anticancer activity against prostate cancer but the underlying mechanism is not fully clear. This study was undertaken to delineate the role of c-Myc in anticancer effects of HNK. Exposure of prostate cancer cells to plasma achievable doses of HNK resulted in a marked decrease in levels of total and/or phosphorylated c-Myc protein as well as its mRNA expression. We also observed suppression of c-Myc protein in PC-3 xenografts upon oral HNK administration. Stable overexpression of c-Myc in PC-3 and 22Rv1 cells conferred significant protection against HNK-mediated growth inhibition and G0-G1 phase cell cycle arrest. HNK treatment decreased expression of c-Myc downstream targets including Cyclin D1 and Enhancer of Zeste Homolog 2 (EZH2), and these effects were partially restored upon c-Myc overexpression. In addition, PC-3 and DU145 cells with stable knockdown of EZH2 were relatively more sensitive to growth inhibition by HNK compared with control cells. Finally, androgen receptor overexpression abrogated HNK-mediated downregulation of c-Myc and its targets particularly EZH2. The present study indicates that c-Myc, which is often overexpressed in early and late stages of human prostate cancer, is a novel target of prostate cancer growth inhibition by HNK.  相似文献   

11.
Several molecules extracted from natural products exhibit different biological activities, such as ion channel modulation, activation of signaling pathways, and anti-inflammatory or antitumor activity. In this study, we tested the antitumor ability of natural compounds extracted from the Raputia praetermissa plant. Among the compounds tested, an alkaloid, here called compound S4 (4-Deoxyraputindole C), showed antitumor effects against human tumor lineages. Compound S4 was the most active against Raji, a lymphoma lineage, promoting cell death with characteristics that including membrane permeabilization, dissipation of the mitochondrial potential, increased superoxide production, and lysosomal membrane permeabilization. The use of cell death inhibitors such as Z-VAD-FMK (caspase inhibitor), necrostatin-1 (receptor-interacting serine/threonine-protein kinase 1 inhibitor), E-64 (cysteine peptidases inhibitor), and N-acetyl- L -cysteine (antioxidant) did not decrease compound S4-dependent cell death. Additionally, we tested the effect of cellular activity on adherent human tumor cells. The highest reduction of cellular activity was observed in A549 cells, a lung carcinoma lineage. In this lineage, the effect on the reduction of the cellular activity was due to cell cycle arrest, without plasma membrane permeabilization, loss of the mitochondrial potential or lysosomal membrane permeabilization. Compound S4 was able to inhibit cathepsin B and L by a nonlinear competitive (negative co-operativity) and simple-linear competitive inhibitions, respectively. The potency of inhibition was higher against cathepsin L. Compound S4 promoted cell cycle arrest at G 0 and G 2 phase, and increase the expression of p16 and p21 proteins. In conclusion, compound S4 is an interesting molecule against cancer, promoting cell death in the human lymphoma lineage Raji and cell cycle arrest in the human lung carcinoma lineage A549.  相似文献   

12.
Formononetin is one of the main components of red clover plants, and is considered as a typical phytoestrogen. This study further investigated that formononetin inactivated IGF1/IGF1R-PI3K/Akt pathways and decreased cyclin D1 mRNA and protein expression in human breast cancer cells in vitro and in vivo. MCF-7 cells were treated with different concentrations of formononetin. The proliferation of the cells treated with formononetin was tested by MTT assay. The cell cycle in the treated cells was examined by flow cytometry. The levels of p-IGF-1?R, p-Akt, and cyclin D1 protein expression and cyclin D1?mRNA expression in the treated cells were determined by Western blot and RT-PCR, respectively. In addition, the antitumor activity of formononetin was evaluated in nude mice bearing orthotopic tumor implants. Compared with the control, formononetin inhibited the proliferation of MCF-7 cells and effectively induced cell cycle arrest. The levels of p-IGF-1?R, p-Akt, cyclin D1 protein expression, and cyclin D1?mRNA expression were also downregulated. On the other hand, formononetin also prevented the tumor growth of human breast cancer cells in nude mouse xenografts. These results show that formononetin causes cell cycle arrest at the G0/G1 phase by inactivating IGF1/IGF1R-PI3K/Akt pathways and decreasing cyclin D1?mRNA and protein expression, indicating the use of formononetin in the prevention of breast cancer carcinogenesis.  相似文献   

13.
14.
Alantolactone, a sesquiterpene lactone compound, has variety of pharmacological properties, including anti‐inflammatory and antineoplastic effects. In our study, alantolactone inhibited cancer cell proliferation. To explore the mechanisms underlying its antitumor action, we further examined apoptotic cells and cell cycle distribution using flow cytometry analysis. Alantolactone triggered apoptosis and induced cell cycle G1/G0 phase arrest. Furthermore, the expressions of caspases‐8, ‐9, ‐3, PARP, and Bax were significantly upregulated, while antiapoptotic factor Bcl‐2 expression was inhibited. In addition, the expressions of cyclin‐dependent kinase 4 (CDK4), CDK6, cyclin D3, and cyclin D1 were downregulated by alantolactone. Therefore, our findings indicated that alantolactone has an antiproliferative role on lung squamous cancer cells, and it may be a promising chemotherapeutic agent for squamous lung cancer SK‐MES‐1 cells.  相似文献   

15.
16.
We have evaluated cell survival, apoptosis, and cell cycle responses in a panel of DNA mismatch repair (MMR)-deficient colon and prostate cancer cell lines after alkylation and UV-C damage. We show that although these MMR-deficient cells tolerate alkylation damage, they are as sensitive to UV-C-induced damage as are the MMR-proficient cells. MMR-proficient cells arrest in the S-G2 phase of the cell cycle and initiate apoptosis following alkylation damage, whereas MMR-deficient cells continue proliferation. However, two prostate cancer cell lines that are MMR-deficient surprisingly arrest transiently in S-G2 after alkylation damage. Progression through G1 phase initially depends on the expression of one or more of the D-type cyclins (D1, D2, and/or D3). Analysis of cyclin D1 expression shows an initial MMR-independent decrease in the protein level after alkylation as well as UV-C damage. At later time points, however, only DNA damage-arrested cells showed decreased cyclin D1 levels irrespective of MMR status, indicating that reduced cyclin D1 could be a result of a smaller fraction of cells being in G1 phase rather than a result of an intact MMR system. Finally, we show that cyclin D1 is degraded by the proteasome in response to alkylation damage.  相似文献   

17.
Lin HP  Jiang SS  Chuu CP 《PloS one》2012,7(2):e31286
Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21(Cip1). Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.  相似文献   

18.
Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21Cip1. Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.  相似文献   

19.
20.
Though the current therapies are effective at clearing an early stage prostate cancer, they often fail to treat late-stage metastatic disease. We aimed to investigate the molecular mechanisms underlying the anticancer effects of a natural triterpenoid, ganoderic acid DM (GA-DM), on two human prostate cancer cell lines: the androgen-independent prostate carcinoma (PC-3), and androgen-sensitive prostate adenocarcinoma (LNCaP). Cell viability assay showed that GA-DM was relatively more toxic to LNCaP cells than to PC-3 cells (IC50s ranged 45-55 µM for PC-3, and 20-25 µM for LNCaP), which may have occurred due to differential expression of p53. Hoechst DNA staining confirmed detectable nuclear fragmentation in both cell lines irrespective of the p53 status. GA-DM treatment decreased Bcl-2 proteins while it upregulated apoptotic Bax and autophagic Beclin-1, Atg5, and LC-3 molecules, and caused an induction of both early and late events of apoptotic cell death. Biochemical analyses of GA-DM-treated prostate cancer cells demonstrated that caspase-3 cleavage was notable in GA-DM-treated PC-3 cells. Interestingly, GA-DM treatment altered cell cycle progression in the S phase with a significant growth arrest in the G2 checkpoint and enhanced CD4 + T cell recognition of prostate tumor cells. Mechanistic study of GA-DM-treated prostate cancer cells further demonstrated that calpain activation and endoplasmic reticulum stress contributed to cell death. These findings suggest that GA-DM is a candidate for future drug design for prostate cancer as it activates multiple pathways of cell death and immune recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号