首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myosin-binding protein C (MyBPC) is proposed to take on a trimeric collar arrangement around the thick filament backbone in cardiac muscle, based on interactions between cardiac MyBPC domains C5 and C8. We have now determined, using yeast two-hybrid and in vitro binding assays, that the C5:C8 interaction is not dependent on the 28-residue cardiac-specific insert in C5. Furthermore, an interaction of similar affinity occurs between domains C5 and C8 of fast skeletal muscle MyBPC, but not between these domains of the slow skeletal muscle protein. These data have implications for the role and quaternary structure of MyBPC in skeletal muscle.  相似文献   

2.
3.
Mitochondria can be isolated from skeletal muscle in a manner that preserves tightly coupled bioenergetic function in vitro. The purpose of this study was to characterize the composition of such preparations using a proteomics approach. Mitochondria isolated from human vastus lateralis biopsies were functional as evidenced by their response to carbohydrate and fat-derived fuels. Using one-dimensional gel electrophoresis and HPLC-ESI-MS/MS, 823 unique proteins were detected, and 487 of these were assigned to the mitochondrion, including the newly characterized SIRT5, MitoNEET and RDH13. Proteins detected included 9 of the 13 mitochondrial DNA-encoded proteins and 86 of 104 electron transport chain (ETC) and ETC-related proteins. In addition, 59 of 78 proteins of the 55S mitoribosome, several TIM and TOM proteins and cell death proteins were present. This study presents an efficient method for future qualitative assessments of proteins from functional isolated mitochondria from small samples of healthy and diseased skeletal muscle.  相似文献   

4.
5.
Irisin converts white adipose tissue (WAT) into brown adipose tissue (BAT), as regulated by energy expenditure. The relationship between irisin concentrations after exercise in rats compared humans after exercise remains controversial. We therefore: (1) measured irisin expression in cardiac and skeletal muscle, liver, kidney, peripheral nerve sheath and skin tissues, as also serum irisin level in 10 week-old rats without exercise, and (2) measured tissue supernatant irisin levels in cardiac and skeletal muscle, and in response to exercise in young and old rats to establishing which tissues produced most irisin. Young (12 months) and old rats (24 months) with or without 10 min exercise (water floating) and healthy 10 week-old Sprague-Dawley rats without exercise were used. Irisin was absent from sections of skeletal muscle of unexercised rats, the only part being stained being the perimysium. In contrast, cardiac muscle tissue, peripheral myelin sheath, liver, kidneys, and skin dermis and hypodermis were strongly immunoreactivity. No irisin was seen in skeletal muscle of unexercised young and old rats, but a slight amount was detected after exercise. Strong immunoreactivity occurred in cardiac muscle of young and old rats with or without exercise, notably in pericardial connective tissue. Serum irisin increased after exercise, being higher in younger than older rats. Irisin in tissue supernatants (cardiac and skeletal muscle) was high with or without exercise. High supernatant irisin could come from connective tissues around skeletal muscle, especially nerve sheaths located within it. Skeletal muscle is probably not a main irisin source.  相似文献   

6.
7.
Although previous studies from this and other laboratories have extensively characterized insulin degrading activity in animal tissues, little information has been available on insulin responsive human tissues. The present study describes the insulin degrading activity in skeletal muscle from normal human subjects. Fractionation of a sucrose homogenate of skeletal muscle demonstrated that 97% of the total neutral insulin degrading activity was in the 100 000 × g supernatant with no detectable glutathione-insulin transhydrogenase activity. The 100 000×g pellet contained 85% of the total acid protease activity and all the glutathione-insulin transhydrogenase activity. The soluble insulin degrading activity was purified 1400-fold by ammonium sulfate fractionation, molecular exclusion, ion-exchange and affinity chromatography. Enzymatic activity was determined by measuring an increase in trichloroacetic acid-soluble products of the 125I-labeled hormone substrates. The purified enzyme showed marked proteolytic specificity for insulin with a Km of 1.63·10?7 M (±0.32) and was competitively inhibited by proinsulin and glucagon with Ki values of 2.1 · 10?6 M and 4.0 · 10?6 M, respectively. This insulin protease exhibited a pH optimum between 7 and 8, a molecular weight of 120 000 and was capable of degrading glucagon. Inhibition studies demonstrated that a sulfhydryl group is essential for activity. Molecular exclusion chromatography of [125I]insulin degraded products revealed a time-dependent increase in degradation products with molecular weights intermediate between intact insulin and iodotyrosine. These studies demonstrate that the major enzymatic system responsible for insulin degrading activity is a soluble cysteine protease capable of rapidly metabolizing insulin under physiologic conditions.  相似文献   

8.
Skeletal muscle functions regulated by NO are now firmly established. However, the knowledge about the NO synthase (NOS) expression related to a defined fibre type in human skeletal muscles necessitates further clarification. To address this issue, we examined localization of NOS isoforms I, II and III, in human skeletal muscles employing immunocytochemical labeling with tyramide signal amplification complemented with enzyme histochemistry and Western blotting. The NOS immunoreactivity was related to fibre types of different classification systems: physiological classification into slow and fast, ATPase classification into I, IIA, IIAX, IIX, and physiological-metabolic classification into slow-oxidative (SO), fast-oxidative glycolytic (FOG) and fast-glycolytic (FG). We found a correlation of NOS I–III immunoreactivity to metabolic defined fibre types with strong expression in FOG fibres. This implies that NO as modulator of muscle function is involved in oxidative metabolism in connection with fast force development, which only occurs in FOG fibres. The NOS expression showed no correlation to ATPase fibre subtypes due to the metabolic heterogeneity of ATPase fibre types. Healthy and affected vastus medialis muscles after anterior cruciate ligament rupture revealed similar NOS expression level as shown by Western blotting with, however, different expression patterns related to the fibre types in affected muscles. This suggests an altered modulation of force development in the fibres of diseased muscles.  相似文献   

9.
骨骼肌的内分泌功能   总被引:7,自引:1,他引:7  
长期以来,骨骼肌被认为是一种效应器官,接受神经和体液的调节。近年大量实验研究资料发现骨骼肌也具有分泌活性物质的功能,能表达、合成和分泌多种生物信号分子,包括调节肽、细胞因子和生长因子等,也是一种重要的内分泌器官。骨骼肌分泌的活性物质以旁分泌和/或自分泌方式调节骨骼肌的生长、代谢和运动功能;甚至以血液循环内分泌的方式调节机体远隔器官组织的功能。骨骼肌生成和分泌的活性物质在运动系统疾病和某些全身性疾病的发病中具有重要的作用。本文将对骨骼肌分泌的主要活性物质及其生理和病理生理学意义进行综述。  相似文献   

10.
Summary Individual muscle fibres were separated from freeze-dried needle biopsies and classed as type I or type II fibres according to their myofibrillar ATP-ase. Portions of the same fibres were processed for electron microscopy and their fine structure examined. Type I fibres were found to have thicker Z-bands and more mitochondria and lipid droplets than the type II fibres.  相似文献   

11.
Summary— In this study, using a modified electrophoretic technique, we have defined in the mouse the myosin heavy-chain composition of both newborn and adult skeletal and cardiac muscles. Using this high resolution technique it was possible to detect modifications in the myosin heavy-chain expression in both cardiac and skeletal muscles of desmin knock-out mice.  相似文献   

12.
Regenerative potential of human skeletal muscle during aging   总被引:3,自引:0,他引:3  
In this study, we have investigated the consequences of aging on the regenerative capacity of human skeletal muscle by evaluating two parameters: (i) variation in telomere length which was used to evaluate the in vivo turn-over and (ii) the proportion of satellite cells calculated as compared to the total number of nuclei in a muscle fibre. Two skeletal muscles which have different types of innervation were analysed: the biceps brachii, a limb muscle, and the masseter, a masticatory muscle. The biopsies were obtained from two groups: young adults (23 +/- 1.15 years old) and aged adults (74 +/- 4.25 years old). Our results showed that during adult life, minimum telomere lengths and mean telomere lengths remained stable in the two muscles. The mean number of myonuclei per fibre was lower in the biceps brachii than in the masseter but no significant change was observed in either muscle with increasing age. However, the number of satellite cells, expressed as a proportion of myonuclei, decreased with age in both muscles. Therefore, normal aging of skeletal muscle in vivo is reflected by the number of satellite cells available for regeneration, but not by the mean number of myonuclei per fibre or by telomere lengths. We conclude that a decrease in regenerative capacity with age may be partially explained by a reduced availability of satellite cells.  相似文献   

13.
The expression of neutral glycosphingolipids and gangliosides has been studied in human skeletal and heart muscle using indirect immunofluorescence microscopy. Transversal and longitudinal cryosections were immunostained with specific monoclonal and polyclonal antibodies against the neutral glycosphingolipids lactosylceramide, globoside, Forssman glycosphingolipid, gangliotetraosylceramide, lacto-N-neotetraosylceramide and against the gangliosides GM3(Neu5Ac) and GM1(Neu5Ac). To confirm the lipid nature of positive staining, control sections were treated with methanol and chloroform:methanol (1:1) before immunostaining. These controls were found to be either negative or strongly reduced in fluorescence intensity, suggesting that lipid bound oligosaccharides were detected. In human skeletal muscle, lactosylceramide was found to be the main neutral glycosphinogolipid. Globoside was moderately expressed, lacto-N-neotetraosylceramide and gangliotetraosylceramide were minimally expressed and Forssman glycosphingolipid was not detected in human skeletal muscle. The intensities of the immunohistological stains of GM3 and GM1 correlated to the fact that GM3 is the major ganglioside in skeletal muscle whereas GM1 is expressed only weakly. In human heart muscle globoside was the major neutral glycosphingolipid. Lactosylceramide and lacto-N-neotetraosylceramide were moderately expressed, gangliotetraosylceramide was weakly expressed and the Forssman glycosphingolipid was not expressed at all in cardiac muscle. GM3 and GM1 were detected with almost identical intensity. All glycosphingolipids were present in plasma membranes as well as at the intracellular level. Abbreviations used: BSA, bovine serum albumin; DAPI, 4,6-diamidine-2-phenylindole-dihydrochloride; DTAF, fluorescein isothiocyanate derivative; GSL(s), glycosphingolipid(s); Neu5Ac,N-acetylneuraminic acid [50]; PBS, phosphate buffered saline. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [51] and the nomenclature of Svennerholm [52]. Lactosylceramide or LacCer, Gal1-4Glc1-1Cer; gangliotriaosylceramide or GgOse3Cer, GalNAc1-4Gal1-4Glc1-1Cer; globotriaosylceramide or GbOse3Cer, Gall-4Gall-4Glcl-1Cer; gangliotetraosylceramide or GgOse4Cer, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; globotetraosylceramide or GbOse4Cer, GalNAc1-3Gal1-4Gal1-4Glc1-1Cer; lacto-N-neotetraosylceramide or nLcOse4Cer, Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; Forssman GSL or GbOse3Cer, GalNAc1-3GalNAc1-3Gal1-4Gal1-4Gle1-1Cer; GM3, II3Neu5Ac-LacCer; GM2, II3Neu5Ac-GgOse3Cer; GM1, II3Neu5Ac-GgOse4Cer; GD3 II3(Neu5Ac)2-LacCer; GD2, II3(Neu5Ac)2-GgOse3Cer; GD1a, IV3Neu5Ac, II3Neu5Ac-GgOse4Cer; GD1b, II3(Neu5Ac)2-GgOse4Cer.  相似文献   

14.
miRNAS in normal and diseased skeletal muscle   总被引:1,自引:0,他引:1  
The last 20 years have witnessed major advances in the understanding of muscle diseases and significant inroads are being made to treat muscular dystrophy. However, no curative therapy is currently available for any of the muscular dystrophies, despite the immense progress made using several approaches and only palliative and symptomatic treatment is available for patients. The discovery of miRNAs as new and important regulators of gene expression is expected to broaden our biological understanding of the regulatory mechanism in muscle by adding another dimension of regulation to the diversity and complexity of gene-regulatory networks. As important regulators of muscle development, unravelling the regulatory circuits involved may be challenging, given that a single miRNA can regulate the expression of many mRNA targets. Although the identification of the regulatory targets of miRNAs in muscle is a challenge, it will be critical for placing them in genetic pathways and biological contexts. Therefore, combining informatics, biochemical and genetic approaches will not only expected to reveal the elucidation of the miRNA regulatory network in skeletal muscle and to bring a better knowledge on muscle tissue regulation but will also raise new opportunities for therapeutic intervention in muscular dystrophies by identifying candidate miRNAs as potential targets for clinical application.  相似文献   

15.
Diffusion-tensor magnetic resonance imaging (DT-MRI) offers objective measures of muscle characteristics, providing insights into age-related changes. We used DT-MRI to probe skeletal muscle microstructure and architecture in a large healthy-aging cohort, with the aim of characterizing age-related differences and comparing these to muscle strength. We recruited 94 participants (43 female; median age = 56, range = 22–89 years) and measured microstructure parameters—fractional anisotropy (FA) and mean diffusivity (MD)—in 12 thigh muscles, and architecture parameters—pennation angle, fascicle length, fiber curvature, and physiological cross-sectional area (PCSA)—in the rectus femoris (RF) and biceps femoris longus (BFL). Knee extension and flexion torques were also measured for comparison to architecture measures. FA and MD were associated with age (β = 0.33, p = 0.001, R2 = 0.10; and β = −0.36, p < 0.001, R2 = 0.12), and FA was negatively associated with Type I fiber proportions from the literature (β = −0.70, p = 0.024, and R2 = 0.43). Pennation angle, fiber curvature, fascicle length, and PCSA were associated with age in the RF (β = −0.22, 0.26, −0.23, and −0.31, respectively; p < 0.05), while in the BFL only curvature and fascicle length were associated with age (β = 0.36, and −0.40, respectively; p < 0.001). In the RF, pennation angle and PCSA were associated with strength (β = 0.29, and 0.46, respectively; p < 0.01); in the BFL, only PCSA was associated with strength (β = 0.43; p < 0.001). Our results show skeletal muscle architectural changes with aging and intermuscular differences in the microstructure. DT-MRI may prove useful for elucidating muscle changes in the early stages of sarcopenia and monitoring interventions aimed at preventing age-associated microstructural changes in muscle that lead to functional impairment.  相似文献   

16.
17.
18.
Recent studies on the role of caveolin-1 in adipocytes showed that caveolin has emerged as an important regulatory element in insulin signaling but little is known on its role in skeletal muscle cells. In this study, we demonstrate for the first time that caveolin-1 plays a crucial role in insulin dependent glucose uptake in skeletal muscle cells. Differentiation of L6 skeletal muscle cells induce the expression of caveolin-1 and caveolin-3 with partial colocalization. However in contrast to adipocytes, phosphorylation of insulin receptor beta (IRbeta) and Akt/Erk was not affected by the respective downregulation of caveolin-1 or caveolin-3 in the muscle cells. Moreover, the phosphorylation of IRbeta was detected not only in the caveolae but also in the non-caveolae fractions of the muscle cells despite the interaction of IRbeta with caveolin-1 and caveolin-3. These data implicate the lack of relationship between caveolins and IRbeta pathway in the muscle cells, different from the adipocytes. However, glucose uptake was reduced specifically by downregulation of caveolin-1, but not that of caveolin-3. Taken together, these observations suggest that caveolin-1 plays a crucial role in glucose uptake in differentiated muscle cells and that the regulation of caveolin-1 expression may be an important mechanism for insulin sensitivity, implying the role of muscle cells for type 2 diabetes.  相似文献   

19.
In humans, there are two skeletal muscle α‐actinins, encoded by ACTN2 and ACTN3, and the ACTN3 genotype is associated with human athletic performance. Remarkably, approximately 1 billion people worldwide are deficient in α‐actinin‐3 due to the common ACTN3 R577X polymorphism. The α‐actinins are an ancient family of actin‐binding proteins with structural, signalling and metabolic functions. The skeletal muscle α‐actinins diverged ~250–300 million years ago, and ACTN3 has since developed restricted expression in fast muscle fibres. Despite ACTN2 and ACTN3 retaining considerable sequence similarity, it is likely that following duplication there was a divergence in function explaining why α‐actinin‐2 cannot completely compensate for the absence of α‐actinin‐3. This paper focuses on the role of skeletal muscle α‐actinins, and how possible changes in functions between these duplicates fit in the context of gene duplication paradigms.  相似文献   

20.
Proteome analysis of human hepatocellular carcinoma (HCC) was done using two-dimensional difference gel electrophoresis. To gain an understanding of the molecular events accompanying HCC development, we compared the protein expression profiles of HCC and non-HCC tissue from 14 patients to the mRNA expression profiles of the same samples made from a cDNA microarray. A total of 125 proteins were identified, and the expression profiles of 93 proteins (149 spots) were compared to the mRNA expression profiles. The overall protein expression ratios correlated well with the mRNA ratios between HCC and non-HCC (Pearson’s correlation coefficient: r = 0.73). Particularly, the HCC/non-HCC expression ratios of proteins involved in metabolic processes showed significant correlation to those of mRNA (r = 0.9). A considerable number of proteins were expressed as multiple spots. Among them, several proteins showed spot-to-spot differences in expression level and their expression ratios between HCC and non-HCC poorly correlated to mRNA ratios. Such multi-spotted proteins might arise as a consequence of post-translational modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号