首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shaw NN  Arya DP 《Biochimie》2008,90(7):1026-1039
Targeting nucleic acids using small molecules routinely uses the end products in the conversion pathway of "DNA to RNA, RNA to protein". However, the intermediate processes in this path have not always been targeted. The DNA-RNA interaction, specifically DNA:RNA hybrid formation, provides a unique target for controlling the transfer of genetic information through binding by small molecules. Not only do DNA:RNA hybrids differ in conformation from widely targeted DNA and RNA, the low occurrence within biological systems further validates their therapeutic potential. Surprisingly, a survey of the literature reveals only a handful of ligands that bind DNA:RNA hybrids; in comparison, the number of ligands designed to target DNA is in the thousands. DNA:RNA hybrids, from their scientific inception to current applications in ligand targeting, are discussed.  相似文献   

2.
The catechin family of molecules that are present in the leaves of green tea has been under investigation since the antioxidant and anti-inflammatory properties of tea were discovered. Among multiple proposed therapeutic targets of these molecules, the direct interaction with nucleic acids has been proposed and experimentally observed but without clear knowledge about the potential binding modes between these ligands and DNA. One of these catechin structures, (–)-epigallocatechin gallate (EGCG), has three aromatic rings that could interact with double-stranded DNA via terminal base-pair stacking, intercalation, or through groove binding. Using enhanced sampling techniques and molecular dynamics simulations, we have found a stable complex between the EGCG ligand and DNA through intercalation of the trihydroxybenzoate aromatic ring and an ApC step. Moreover, we have calculated the absorption spectra of four possible binding modes and compared these to absorption profiles reported in the literature, and explored the possible DNA sequence preference for the EGCG ligand to bind. Our results suggest that an intercalative mode of interaction through the major groove is possible between the EGCG ligands and DNA with apparently very little DNA sequence selectivity.  相似文献   

3.
Molecular docking, molecular mechanics, molecular dynamics and relaxation matrix simulation protocols have been extensively used to generate the structural details of ligand-receptor complexes in order to understand the binding interactions between the two entities. Experimental methods like NMR spectroscopy and X-ray crystallography are known to provide structural information about ligand-receptor complexes. In addition, fluorescence spectroscopy, circular dichroism (CD) spectroscopy and molecular docking have also been utilized to decode the phenomenon of the ligand-DNA interactions, with good correlation between experimental and computational results. The DNA binding affinity was demonstrated by analysing fluorescence spectral data. Structural rigidity of DNA upon ligand binding was identified by CD spectroscopy. Docking is carried out using the DNA-Dock program which results in the binding affinity data along with structural information like interatomic distances and H-bonding, etc. The complete structural analyses of various drug-DNA complexes have afforded results that indicate a specific DNA binding pattern of these ligands. It also exhibited that certain structural features of ligands can make a ligand to be AT- or GC-specific. It was also demonstrated that changing specificity from AT base pairs to GC base pairs further improved the DNA topoisomerase inhibiting activity in certain ligands. Thus, a specific molecular recognition signature encrypted in the structure of ligand can be decoded and can be effectively employed in designing more potent antiviral and antitumour agents.  相似文献   

4.
5.
In the present work, the adsorption kinetics of extended ligands on DNA duplexes at small fillings when molecules of DNA duplexes are on the underlayer within diffusion layer has been investigated. Both diffusion of ligands in solution (diffusion stage) and adsorption of ligands (kinetic stage) are taken into consideration at adsorption of ligands on DNA duplexes. Nonlinear system of differential equations describing adsorption of ligands where not only diffusion stage but also kinetic stage is taken into account, is obtained, moreover the equations allow localizing duplexes in arbitrary place within diffusion layer. Numeric solution of the equations makes possible to investigate the filling kinetics of DNA duplexes by ligands depending on parameters controlling adsorption process. It has been shown that depending on relation between adsorption parameters different kinetic regimes of adsorption – kinetic, complex, and diffusion regimes may be realized.  相似文献   

6.
Mechanical properties of single double-stranded DNA (dsDNA) in the presence of different binding ligands were analyzed in optical-tweezers experiments with subpiconewton force resolution. The binding of ligands to DNA changes the overall mechanic response of the dsDNA molecule. This fundamental property can be used for discrimination and identification of different binding modes and, furthermore, may be relevant for various processes like nucleosome packing or applications like cancer therapy. We compared the effects of the minor groove binder distamycin-A, a major groove binding alpha-helical peptide, the intercalators ethidium bromide, YO-1, and daunomycin as well as the bisintercalator YOYO-1 on lambda-DNA. Binding of molecules to the minor and major groove of dsDNA induces distinct changes in the molecular elasticity compared to the free dsDNA detectable as a shift of the overstretching transition to higher forces. Intercalating molecules affect the molecular mechanics by a complete disappearance of the B-S transition and an associated increase in molecular contour length. Significant force hysteresis effects occurring during stretching/relaxation cycles with velocities >10 nm/s for YOYO-1 and >1000 nm/s for daunomycin. These indicate structural changes in the timescale of minutes for the YOYO-DNA and of seconds for the daunomycin-DNA complexes, respectively.  相似文献   

7.
Experimental are described which probe the role of the 2-amino group of guanine as a critical determinant of the recognition of nucleotide sequences in DNA by specific ligands. Homologous samples of tyrT DNA substituted with inosine or 26-diaminopourine residues in place of guanosine or adenine respectively yield characteristically modified footprinting patterns when challenged with sequence-selective antibiotics such as echinomycin, actinomycin or netrospin. The capacity of small molecules to recognise particular DNA sequences is exploited in the ‘combilexin’ strategy to target small molecules to defined sites in DNA. A composite molecule containing a distamycin moiety linked to an intercalating ellipticine derivative has been synthesised and shown to bind tightly to DNA but without much sequence-selectivity. Refinement of this molecule based on predictions from molecular modelling has led to the synthesis of a second generation derivative bearing an additional positive charge: this new hybrid molecule is strongly selective for binding to AT-rich tracts in DNA.  相似文献   

8.
Telomeric DNA contains some unique secondary structures, such as G-quadruplex and I-motif. These structures may be stabilized or changed by binding to specific proteins or small molecules. Herein, we report the in vitro effect of crocin, crocetin, picrocrocin, and safranal on these structures. Circular dichroism (CD) data indicate that crocetin has higher affinity for these structures. Safranal and crocin induce little change in the I-motif and G-quadruplex, respectively. The molecular docking confirms the experimental data and indicates the minor groove binding of ligands with G-quadruplex. The possibility for application of these ligands as sequence-specific drugs should be further investigated.  相似文献   

9.
The binding of small molecules to double stranded DNA including intercalation between base pairs has been a topic of research for over 40 years. For the most part, however, intercalation has been of marginal interest given the prevailing notion that binding of small molecules to protein receptors is largely responsible for governing biological function. This picture is now changing with the discovery of nuclear enzymes, e.g. topoisomerases that modulate intercalation of various compounds including certain antitumor drugs and genotoxins. While intercalators are classically flat, aromatic structures that can easily insert between base pairs, our laboratories reported in 1977 that a number of biologically active compounds with greater molecular thickness, e.g. steroid hormones, could fit stereospecifically between base pairs. The hypothesis was advanced that intercalation was a salient feature of the action of gene regulatory molecules. Two parallel lines of research were pursued: (1) development of technology to employ intercalation in the design of safe and effective chemicals, e.g. pharmaceuticals, nutraceuticals, agricultural chemicals; (2) exploration of intercalation in the mode of action of nuclear receptor proteins. Computer modeling demonstrated that degree of fit of certain small molecules into DNA intercalation sites correlated with degree of biological activity but not with strength of receptor binding. These findings led to computational tools including pharmacophores and search engines to design new drug candidates by predicting desirable and undesirable activities. The specific sequences in DNA into which ligands best intercalated were later found in the consensus sequences of genes activated by nuclear receptors implying intercalation was central to their mode of action. Recently, the orientation of ligands bound to nuclear receptors was found to match closely the spatial locations of ligands derived from intercalation into unwound gene sequences suggesting that nuclear receptors may be guiding ligands to DNA with remarkable precision. Based upon multiple lines of experimental evidence, we suggest that intercalation in double stranded DNA is a ubiquitous, natural process and a salient feature of the regulation of genes. If double stranded DNA is proven to be the ultimate target of genomic drug action, intercalation will emerge as a cornerstone of the future discovery of safe and effective pharmaceuticals.  相似文献   

10.
We have applied molecular docking methods to systems containing nucleic acids as targets and biologically active substances as ligands. The complexes of DNA fragments and actinocin derivatives with different lengths of aminoalkyl side chains were obtained by molecular docking. It was observed that actinocin derivatives could form energetically favourable complexes with DNA both as intercalators and minor groove binders. It was shown that small changes in the binding energy (~1?kcal/mol) could result in complexes with substantially different structure. The complexes of actinocin derivatives and DNA fragments were stabilized by hydrogen bonding upon intercalation and minor groove binding. It was found that the change of solvent-accessible surface area upon binding of the actinocin derivative to DNA linear increased with the growth of methylene groups' number in ligand side chains. The solvation energy change upon binding of actinocin derivatives to DNA calculated by the WSAS method was favourable in the case of small uncharged ligands and unfavourable for positively charged ligands.  相似文献   

11.
12.
DNA计算机的分子生物学研究进展   总被引:7,自引:0,他引:7  
张治洲  赵健  贺林 《遗传学报》2003,30(9):886-892
DNA(脱氧核糖核酸)计算机研究是一个新领域。从字面上看,它既包含DNA研究也包含计算机的研究,因而也包含DNA技术与计算机技术如何交融的研究。1994年,Adleman在Science上报道了首例DNA计算的研究结果;2001年,Benenson等在Nature报道了一种由DNA分子和相应的酶分子构成的、有图灵机功能的可程序试管型DNA计算机,标志着DNA计算机研究的重大进展。DNA计算机最大的特点是超大规模的并行运算能力和潜在的巨大的数据储存能力。目前DNA计算机研究已涉及许多领域,包括生物学、数学、物理、化学、计算机科学和自动化工程等具体应用,是计算概念上的一次革命。DNA计算机的研究大大促进了DNA分子操作技术尤其是在纳米尺度下操作DNA分子的研究速度。从DNA计算机的基本原理、应用形式、与基因组学研究的重要关系等方面总结和评述了相关研究进展。  相似文献   

13.
14.
Interactions between proteins and other molecules play essential roles in all biological processes. Although it is widely held that a protein's ligand specificity is determined primarily by its three‐dimensional structure, the general principles by which structure determines ligand binding remain poorly understood. Here we use statistical analyses of a large number of protein?ligand complexes with associated binding‐affinity measurements to quantitatively characterize how combinations of atomic interactions contribute to ligand affinity. We find that there are significant differences in how atomic interactions determine ligand affinity for proteins that bind small chemical ligands, those that bind DNA/RNA and those that interact with other proteins. Although protein‐small molecule and protein‐DNA/RNA binding affinities can be accurately predicted from structural data, models predicting one type of interaction perform poorly on the others. Additionally, the particular combinations of atomic interactions required to predict binding affinity differed between small‐molecule and DNA/RNA data sets, consistent with the conclusion that the structural bases determining ligand affinity differ among interaction types. In contrast to what we observed for small‐molecule and DNA/RNA interactions, no statistical models were capable of predicting protein?protein affinity with >60% correlation. We demonstrate the potential usefulness of protein‐DNA/RNA binding prediction as a possible tool for high‐throughput virtual screening to guide laboratory investigations, suggesting that quantitative characterization of diverse molecular interactions may have practical applications as well as fundamentally advancing our understanding of how molecular structure translates into function. Proteins 2015; 83:2100–2114. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

15.
A series of surfactant–copper(II) Schiff base complexes (1–6) of the general formula, [Cu(sal-R2)2] and [Cu(5-OMe-sal-R2)2], {where, sal?=?salicylaldehyde, 5-OMe-sal?=?5-methoxy- salicylaldehyde, and R2?=?dodecylamine (DA), tetradecylamine (TA), or cetylamine (CA)} have been synthesized and characterized by spectroscopic, ESI-MS, and elemental analysis methods. For a special reason, the structure of one of the complexes (2) was resolved by single crystal X-ray diffraction analysis and it indicates the presence of a distorted square-planar geometry in the complex. Analysis of the binding of these complexes with DNA has been carried out adapting UV-visible-, fluorescence-, as well as circular dichroism spectroscopic methods and viscosity experiments. The results indicate that the complexes bind via minor groove mode involving the hydrophobic surfactant chain. Increase in the length of the aliphatic chain of the ligands facilitates the binding. Further, molecular docking calculations have been performed to understand the nature as well as order of binding of these complexes with DNA. This docking analysis also suggested that the complexes interact with DNA through the alkyl chain present in the Schiff base ligands via the minor groove. In addition, the cytotoxic property of the surfactant–copper(II) Schiff base complexes have been studied against a breast cancer cell line. All six complexes reduced the visibility of the cells but complexes 2, 3, 5, and 6 brought about this effect at fairly low concentrations. Analyzed further, but a small percentage of cells succumbed to necrosis. Of these complexes (6) proved to be the most efficient aptotoxic agent.  相似文献   

16.
17.
Self-structure induction in single stranded poly(A) has been one typical example of the various ways that could be used to modulate nucleic acid structural aspects through binding of small molecules. For the first time, the interaction between a series of small molecules and poly(A) has been investigated to understand the nature of the structural features in DNA binding small molecules that could be responsible for the formation of self-structure in single stranded poly(A) molecules. Classical intercalators like ethidium, coralyne, quinacrine and proflavine, partial intercalators like berberine and palmatine and classical minor groove binders like hoechst 33258 and DAPI have been chosen for this study. The binding of each of these molecules to poly(A) has been characterized by absorption spectral titration, job plot and isothermal titration calorimetry. Self-structure formation was monitored from circular dichroic melting, optical melting and differential scanning calorimetry. The results revealed that while all the intercalators studied induced self-structure formation, partial intercalators did not induce the same in poly(A). Of the two classical DNA minor groove binding molecules investigated, hoechst was effective in inducing self-structure while DAPI was ineffective. Self-structure induction in poly(A) was observed to be directly linked to the cooperative binding of the molecules to poly(A) in that all the molecules that bound cooperatively induced self-structure in poly(A). Structural and thermodynamic aspects of the interaction leading to self-structure formation are described.  相似文献   

18.
Teif  V. B.  Lando  D. Yu. 《Molecular Biology》2001,35(1):106-107
A method for calculating the curves of DNA transition from linear to condensed state upon binding of condensing ligands has been developed. The character of the transition and ligand concentration necessary for condensation have been shown to be governed by the length of DNA molecule, energy and stoichiometry parameters of the DNA–ligand complex (equilibrium constant between linear and condensed form in the absence of ligands, constants for ligand binding to linear and condensed forms, the number of base pairs covered by one ligand, etc.). The results of the calculations indicate that a slight difference in the free energies of these DNA states (less than 6 cal/mol(bp) for a DNA of 500 bp) is sufficient for the existence of a stable linear state in the absence of ligands (in free DNA) and the formation of stable condensed state upon complexation.  相似文献   

19.
The aryl hydrocarbon receptor (AHR) is one of the principal xenobiotic receptors in living organisms and is responsible for interacting with several drugs and environmental toxins, most notably tetrachlorodibenzodioxin (TCDD). Binding of diverse agonists to AHR initiates an extensive set of downstream gene expression responses and thus identifies AHR among a key set of proteins responsible for mediating interactions between living organisms and foreign molecules. While extensive biochemical investigations on the interaction of AHR with ligands have been carried out, studies comparing the abilities of specific computational algorithms in explaining the potency of known AHR ligands are lacking. In this study we use molecular dynamics simulations to identify a physically realistic conformation of the AHR that is relevant to ligand binding. We then use two sets of existing data on known AHR ligands to evaluate the performance of several docking and scoring protocols in rationalizing the potencies of these ligands. The results identify an optimum set of protocols that could prove useful in future AHR ligand discovery and design as a target or anti-target. Exploration of the details of these protocols sheds light on factors operating in modeling AHR ligand binding.  相似文献   

20.
Variation in odor perception between individuals is initiated by binding of “odorant” molecules to olfactory receptors (ORs) located in the nasal cavity. To determine the mechanism for variation in odor perception, identification of specific ligands for a large number of ORs is required. However, it has been difficult to identify specific ligands, and ligands have been identified for only 2–3% of the hundreds of mammalian ORs. One way to increase the number of identified ligands is to take advantage of >60 human OR genes that are segregating as a result of a single nucleotide polymorphism, between a functional intact allele and a nonfunctional pseudogene allele. Potential ligands for these ORs can be identified by correlating odor perception of an individual with their genotype [intact/intact (I/I) vs. pseudogene/pseudogene (P/P)] for an OR gene. For this type of study, genotypes must be determined for a large number of individuals. We have developed a PCR-based assay to distinguish between the intact and pseudogene alleles of 49 segregating human OR genes and to determine an individual''s genotype for these genes. To facilitate rapid determination of genotypes for a large number of individuals, the assay uses a small number of simple steps and equipment commonly found in most molecular biology and biochemistry laboratories. Although this assay was developed to distinguish between polymorphisms in OR genes, it can easily be adapted for use in distinguishing single nucleotide polymorphisms in any gene or chromosomal locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号