首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the search of natural compounds inhibiting methane production in ruminants three novel steroidal saponins have been isolated from the aerial parts of Helleborus viridis L. Their structures have been established based on spectral analyses as: (25R)-26-O-β-d-glucopyranosyl-5β-furostan-3β,22α,26-triol 3-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside, (25R)-26-O-β-d-glucopyranosyl-5α-furostan-3β,22α,26-triol 3-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside and (25R)-26-O-β-d-glucopyranosyl-furost-5-ene-1β,3β,22α,26-tetraol 1-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  3)]-6-O-acetoxy-β-d-glucopyranoside}.  相似文献   

2.
Five C-glycosylflavone were isolated from Vaccaria hispanica (Miller) Rauschert seeds. Their NMR spectra showed separate signals because of the existence of rotational isomers, which is an unusual phenomenon. The spectroscopic data revealed that compounds 15 were identified as apigenin 6-C-[α-l-arabinopyranosyl-(1′′′→2′′)-β-d-glucopyranosyl]-7-O-β-d-glucopyranoside (1), apigenin 6-C-[α-l-arabinopyranosyl-(1′′′→2′′)-β-d-glucopyranosyl]-7-O-(6′′′′-O-dihydroferuloyl)-β-d-glucopyranoside (2), apigenin 6-C-β-d-glucopyranosyl-7-O-(6′′′-O-dihydroferuloyl)-β-d-glucopyranoside (3) and isovitexin-2′′-O-arabinoside (4) and saponarin (5), respectively. The structure of ‘vaccarin’ was revised to apigenin 6-C-[α-l-arabinopyranosyl-(1′′′→2′′)-β-d-glucopyranosyl]-7-O-β-d-glucopyranoside and consequently 1 should be named ‘vaccarin’. Among the isolated compounds, 2 and 3 are new and named vaccarin E and vaccarin F, respectively.  相似文献   

3.
Dried aerial parts of Tetragonia tetragonoides were extracted with 70% EtOH, and the evaporated residue was successively separated into EtOAc, n-BuOH, and H2O fractions. As a result of repeated SiO2, ODS, and Sephadex LH-20 column chromatography, four new 6-methoxyflavonol glycosides (24, 8) along with four known ones (1, 57) were isolated. Several spectroscopic data led to determination of chemical structures for four new 6-methoxyflavonol glycosides (24, 8) and four known ones, 6-methoxykaempferol 3-O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl-7-O-(6‴′-(E)-caffeoyl)-β-d-glucopyranoside (1), 6-methoxyquercetin (5), 6-methoxykaempferol (6), and 6-methoxykaempferol 7-O-β-d-glucopyranoside (7). Methoxyflavonol glycosides 28 also have never been reported from T. tetragonoides in this study. 6-Methoxyflavonols 5 and 6 showed high radical scavenging potential in DPPH and ABTS test. Also, all compounds showed significant anti-inflammatory activities such as reduction of NO and PGE2 formation and suppression of TNF-α, IL-6, IL-1β, iNOS, and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. In general, the aglycones exhibited higher activity than the glycosides. In addition, quantitative analysis of 6-methoxyflavonols in the T. tetragonoides aerial parts extract was conducted through HPLC.  相似文献   

4.
Four new and three known oleanane-type saponins have been isolated from the methanolic extract of Phryna ortegioides, a monotypic and endemic taxon of Caryophyllaceae.The structures of the new compounds were determined as gypsogenic acid 28-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-β-d-glucopyranosyl ester (1), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (2), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-]-β-d-glucopyranosyl ester (3), 3-O-α-l-arabinofuranosyl-16α-hydroxyolean-12-en-23,28-dioic acid-28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (4). Their structures were established by a combination of one- and two-dimensional NMR techniques, and mass spectrometry. Noteworthy, none of isolated compounds possesses as aglycone moiety gypsogenin, considered a marker of Caryophyllaceae family.The cytotoxic activity of the isolated compounds was evaluated against three cancer cell lines including A549 (human lung adenocarcinoma), A375 (human melanoma) and DeFew (human B lymphoma) cells. Only compound 6 showed a weak activity against A375 and DeFew cell lines with IC50 values of 77 and 52 μM, respectively. None of the other tested compounds, in a range of concentrations between 12.5 and 100 μM, caused a significant reduction of the cell number.  相似文献   

5.
Three undescribed flavonol triglycosides, rhamnetin-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→6)]-β-d-glucopyranoside (champaluangoside A), rhamnetin-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-galactopyranoside (champaluangoside B) and rhamnocitrin-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-glucopyranoside (champaluangoside C), were isolated from Magnolia utilis in addition to eleven known compounds; quercetrin-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-glucopyranoside, oxytroflavoside G, magnoloside A, magnoloside M, magnoloside D, manglieside A, manglieside B, 1,2-di-O-β-d-glucopyranosyl-4-allylbebzene, syringrin, benzyl β-d-allopyranoside and (+)-syringaresinol-O-β-d-glucopyranoside. The structure elucidation of these compounds was based on analyses of physical and spectroscopic data.  相似文献   

6.
4′-O-β-d-Glucopyranosyl-quercetin-3-O-β-d-glucopyranosyl-(1→4)-β-d-glucopyra-noside (3) was isolated from Helminthostachys zeylanica root extract as a melanogenesis acceleration compound and was synthesized using rutin as the starting material. Related compounds were also synthesized to understand the structure–activity relationships in melanin biosynthesis.Melanogenesis activities of the glycosides were determined by measuring intracellular melanin content in B16 melanoma cells. Among the synthesized quercetin glycosides, quercetin-3-O-β-d-glucopyranoside (1), quercetin-3-O-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside (2), and 3 showed more potent intracellular melanogenesis acceleration activities than theophyline used as positive control in a dose-dependent manner with no cytotoxic effect.  相似文献   

7.
Antibacterial phenolic components from Eriocaulon buergerianum   总被引:1,自引:0,他引:1  
Fang JJ  Ye G  Chen WL  Zhao WM 《Phytochemistry》2008,69(5):1279-1286
Five phenolic components, 1,3,6-trihydroxy-2,5,7-trimethoxyxanthone (1), 7,3′-dihydroxy-5,4′,5′-trimethoxyisoflavone (2), toralactone-9-O-β-d-glucopyranoside (3), patuletin-3-O-[2-O-E-feruloyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside] (4), patuletin-3-O-[β-d-glucopyranosyl-(1 → 3)-2-O-E-caffeoyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside] (5), along with 19 known compounds were isolated from Eriocaulon buergerianum (Eriocaulaceae). Their structures were determined by spectroscopic and chemical methods. All 24 isolated compounds were tested against the pathogenic bacteria Staphylococcus aureus (ATCC 25923); as a result, 10 compounds were found to exhibit antibacterial activity with MICs ranging from 32 to 256 μg/ml.  相似文献   

8.
Three new phenylethanoid glycosides, 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside A, 1), 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-glucopyranosyl-(1  4)-β-d-allopyranoside (hodgsonialloside B, 2) and 2-(3-methoxy-4-hydroxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside C, 3) were isolated from the leaves of Magnolia hodgsonii in addition to six known compounds, tyrosol 4-O-β-d-xylopyranosyl-(1  6)-β-d-glucopyranoside (4), kaempferol 3-O-neohesperidoside (5), kaempferol 3-O-rutinoside (6), kaempferol 3-O-α-l-rhamnopyranosyl-(1  2)-[α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside (7), (+)-syringaresinol O-β-d-glucopyranoside (8), and oblongionoside C (9). The structure elucidation of these compounds was based on analyses of physical and spectroscopic data including 1D and 2D NMR experiments.  相似文献   

9.
Lu Y  Luo J  Huang X  Kong L 《Steroids》2009,74(1):95-628
Two novel C-22 steroidal lactone saponins, namely solanolactosides A, B (1, 2) and two new spirostanol glycosides, namely torvosides M, N (3, 4) were isolated from ethanol extract of aerial parts of Solanum torvum. Their structures were characterized as solanolide 6-O-[α-l-rhamnopyranosyl-(1 → 3)-O-β-d-quinovopyranoside] (1), solanolide 6-O-[β-d-xylopyranosyl-(1 → 3)-O-β-d-quinovopyranoside] (2), yamogenin 3-O-[β-d-glucopyranosyl-(1 → 6)-O-β-d-glucopyranoside] (3) and neochlorogenin 3-O-[β-d-glucopyranosyl-(1 → 6)-O-β-d-glucopyranoside] (4) on the basis of spectroscopic analysis. The cytotoxicities of the saponins (1-4) were evaluated in vitro against a panel of human cancer cell lines. Compounds 3 and 4 showed significant cytotoxic activity with the cell lines.  相似文献   

10.
The reaction of phenyl 2-acetamido-2-deoxy-4,6- O-(p-methoxybenzylidene)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide under halide ion-catalyzed conditions proceeded readily, to give phenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (8). Mild treatment of 8 with acid, followed by hydrogenolysis, provided the disaccharide phenyl 2-acetamido-2-deoxy-3-O-α-l-fucopyranosyl-β-d-glucopyranoside. Starting from 6-(trifluoroacetamido)hexyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranoside, the synthesis of 6-(trifluoroacetamido)hexyl 2-acetamido-2-deoxy-3-O-β-l-fucopyranosyl-β-d-glucopyranoside has been accomplished by a similar reaction-sequence. On acetolysis, methyl 2-acetamido-2-deoxy-3-O-α-l-fucopyranosyl-α-d-glucopyranoside gave 2-methyl-[4,6-di-O-acetyl-1,2-dideoxy-3-O-(2,3,4-tri-O-acetyl-α-l-fucopyranosyl)-α-d-glucopyrano]-[2, 1-d]-2-oxazoline as the major product.  相似文献   

11.
Ten flavone compounds, including three new flavonoid glycosides, were isolated from defatted rapeseed, and their protective antioxidant effect on H2O2-induced oxidative damage in human umbilical vein endothelial cells (ECV-304) was investigated. Three new flavonoid glycosides were identified as kaempferol-3-O-[(6-O-sinapoyl)-β-d-glucopyranosyl-(1  2)-β-d-glucopyranoside]-7-O-β-d-glucopyranoside (8), kaempferol-3,7-di-O-β-d-glucopyranoside-4'-O-(6-O-sinapoyl)-β-d-glucopyranoside (9), and kaempferol-3-O-[(3-O-sinapoyl)-β-d-glucopyranosyl-(1  2)-β-d-glucopyranoside]-7-O-β-d-glucopyranoside (10). The protective effects of all of the isolated compounds on H2O2-induced oxidative damage were assessed, and the activities of superoxide dismutase (SOD) and lactate dehydrogenase (LDH) were measured. All of compounds had a protective effect on H2O2-induced oxidative damage in ECV-304 cells and the presence of a substituted sinapoyl group and its position in the structures were used to elucidate the activity differences.  相似文献   

12.
Three new phenolic glycosides 2-(3-O-β-d-glucopyranosyl-4-hydroxyphenyl) ethanol 1-O-β-d-glucopyranoside (1), 2-(4-O-β-d-fructopyranosylphenyl) ethanol 1-O-β-d-galactopyranoside (2) and 3-methoxy-4-O-β-d-allopyranosyl acetophenone (3), along with nine known compounds (4–12), were isolated from the ethanol extract of the whole plant of Aconitum tanguticum (Maxim.) Stapf. Their structures were elucidated by analysis of spectroscopic data including 1D-, 2D-NMR and HRESIMS, and the reported literature data comparison. All the compounds were evaluated for their potential anti-inflammatory effects by the inhibition of TNF-α production on LPS-stimulated RAW264.7 macrophages. Compounds 1, 3, 5 and 79 showed certain inhibition activity and their IC50 values were 38.18, 27.64, 3.25, 84.45, 12.76 and 18.44 μg/mL, respectively.  相似文献   

13.
Two new tridesmosidic cycloartane-type triterpene glycosides (1 and 2) were isolated from the methanolic extract of the roots of Astragalus brachycalyx FISCHER (A. brachycalyx) along with ten (3–12) known cycloartane-type triterpene glycosides. Structures of the new compounds were established as 3-O-β-d-xylopyranosyl-6-O-β-d-glucopyranosyl-16-O-β-d-glucopyranosyl-3β,6α,16β,24(S)-25-pentahydroxycycloartane (1), 3-O-[α-l-arabinopyranosyl-(1→2)-β-d-xylopyranosyl]-6-O-β-d-glucopyranosyl-16-O-β-d-glucopyranosyl-3β,6α,16β,24(S)-25-pentahydroxycycloartane (2), by using 1D and 2D-NMR techniques and mass spectrometry.In vitro immunomodulatory effects and hemolytic activities of the new saponins (1 and 2) and acetylated form of 1 (1a) were studied together with the BuOH and MeOH extracts of Astragalus brachycalyx. The results have proven that tridesmosidic Astragalus cycloartanes are noteworthy immunomodulatory compounds via induction of cytokine production, namely IL-2 and IFN-γ. The test compounds also resulted slight hemolysis at very high doses substantiating a safer profile compared to the positive control QS-21.  相似文献   

14.
Three new cycloartane-type triterpene glycosides were isolated from the roots of Astragalus schottianus Boiss. Their structures were established as 20(R),25-epoxy-3-O-β-d-xylopyranosyl-24-O-β-d-glucopyranosyl-3β,6α,16β,24α-tetrahydroxycycloartane (1), 20(R),25-epoxy-3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl-24-O-β-d-glucopyranosyl-3β,6α,16β,24α-tetrahydroxycycloartane (2), 3-O-β-d-xylopyranosyl-3β,6α,16β,20(S),24(S),25-hexahydroxycycloartane (3) by the extensive use of 1D and 2D-NMR techniques and mass spectrometry.  相似文献   

15.
Two new penterpenoid saponins, hemsloside-Ma4 (1) hemsloside-Ma5 (2), and a new diterpenoid glycoside, hemsloside-Ma6 (3), were isolated from the rhizomes of Hemsleya chinensis. By detailed analysis of the NMR spectra and chemical methods, the structures of new compounds were determined to be 3-O-β-l-arabinopyranosyl-(1  3)-O-(6′-methyl ester)-β-d-glucuropyranosyl-oleanolic acid-28-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside (1), 3-O-β-l-arabinopyranosyl-(1  3)-O-(6′-methyl ester)-β-d-glucuropyranosyl-oleanolic acid-28-O-β-d-xylopyranosyl-(1  6)-O-β-d-glucopy-ranoside (2), and 13ϵ-hydroxylabda-8(17), 14-dien-18-oic acid-18-O-α-l-rhamnopyranosyl-(1  2)-O-β-d-glucopyranosyl-(1  4)-O-α-l-rhamnopyranoside (3). Diterpenoid-type compound (3) was isolated from Hemsleya genus for the first time.  相似文献   

16.
Astragalin (kaempferol-3-O-β-d-glucopyranoside, Ast) glucosides were synthesized by the acceptor reaction of a dextransucrase produced by Leuconostoc mesenteroides B-512FMCM with astragalin and sucrose. Each glucoside was purified and their structures were assigned as kaempferol-3-O-β-d-glucopyranosyl-(1 → 3)-O-α-d-glucopyranoside (or kaempferol-3-O-β-d-nigeroside, Ast-G1′) and kaempferol-3-O-β-d-glucopyranosyl-(1 → 6)-O-α-d-glucopyranoside (or kaempferol-3-O-β-d-isomaltoside, Ast-G1) for one glucose transferred, and kaempferol-3-O-β-d-isomaltooligosacharide (Ast-IMO or Ast-Gn; n = 2-8). The astragalin glucosides exhibited 8.3-60.6% higher inhibitory effects on matrix metalloproteinase-1 expression, 18.8-20.3% increased antioxidant effects, and 3.8-18.8% increased inhibition activity of melanin synthesis compared to control (without the addition of compound), depending on the number of glucosyl residues linked to astragalin. These novel compounds could be used to further expand the industrial applications of astragalin glucosides, in particular in the cosmetics industry.  相似文献   

17.
Four cycloartane- (hareftosides A–D) and oleanane-type triterpenoids (hareftoside E) were isolated from Astragalus hareftae along with fifteen known compounds. Structures of the compounds were established as 3,6-di-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (1), 3,6,24-tri-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (2), 3-O-β-d-xylopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),25(S)-epoxycycloartane (3), 16-O-β-d-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane (4), 3-O-[β-d-xylopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucuronopyranosyl]-soyasapogenol B (5) by the extensive use of 1D- and 2D-NMR experiments along with ESI-MS and HR-MS analyses.  相似文献   

18.
Three new steroidal saponins, spirosta-5,25(27)-diene-1β,3β-diol-1-O-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranoside (fruticoside H) 1, 5α-spirost-25(27)-ene-1β,3β-diol-1-O-α-l-rhamnopyranosyl-(1→2)-(4-O-sulfo)-β-d-fucopyranoside (fruticoside I) 2, and (22S)-cholest-5-ene-1β,3β,16β,22-tetrol 1-O-β-galactopyranosyl-16-O-α-l-rhamnopyranoside (fruticoside J) 3, together with the known quercetin 3-O-β-d-glucopyranoside, quercetin 3-O-[6-trans-p-coumaroyl]-β-d-glucopyranoside, quercetin 3-rutinoside, apigenin 8-C-β-d-glucopyranoside and farrerol, were isolated from the leaves of Cordyline fruticosa. Their structures were elucidated by spectroscopic techniques (1H NMR, 13C NMR, HSQC, 1H–1H COSY, HMBC, TOCSY, NOESY), mass spectrometry (HRESIMS, Tandem MS–MS), chemical methods and by comparison with published data. Compounds 1 and 2 showed moderate cytotoxic activity against MDA-MB 231 human breast adenocarcinoma cell line, HCT 116 human colon carcinoma cell line, and A375 human malignant melanoma cell line, while compound 3 was not active. Compound 2 also showed a moderate antibacterial activity against the Gram-positive Enterococcus faecalis.  相似文献   

19.
One new bithiophenes, 5-(but-3-yne-1,2-diol)-5′-hydroxy-methyl-2,2′-bithiophene (2), two new polyacetylenic glucosides, 3-O-β-d-glucopyranosyloxy-1-hydroxy-4E,6E-tetradecene-8,10,12-triyne (8), (5E)-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-β-d-glucopyranoside (9), six new terpenoid glycosides, rel-(1S,2S,3S,4R,6R)-1,6-epoxy-menthane-2,3-diol-3-O-β-d-glucopyranoside (10), rel-(1S,2S,3S,4R,6R)-3-O-(6-O-caffeoyl-β-d-glucopyranosyl)-1,6-epoxy menthane-2,3-diol (11), (2E,6E)-2,6,10-trimethyl-2,6,11-dodecatriene-1,10-diol-1-O-β-d-glucopyranoside (12), 3β,16β,29-trihydroxy oleanane-12-ene-3-O-β-d-glucopyranoside (13), 3,28-di-O-β-d-glucopyranosyl-3β,16β-dihydroxy oleanane-12-ene-28-oleanlic acid (14), 3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl oleanlic-18-ene acid-28-O-β-d-glucopyranoside (15), along with fifteen known compounds (1, 37, and 1624), were isolated from the aerial parts of Eclipta prostrata. Their structures were established by analysis of the spectroscopic data. The isolated compounds 19 were tested for activities against dipeptidyl peptidase IV (DPP-IV), compound 7 showed significant antihyperglycemic activities by inhibitory effects on DPP-IV in human plasma in vitro, with IC50 value of 0.51 μM. Compounds 1024 were tested in vitro against NF-κB-luc 293 cell line induced by LPS. Compounds 12, 15, 16, 19, 21, and 23 exhibited moderate anti-inflammatory activities.  相似文献   

20.
《Carbohydrate research》1986,154(1):93-101
O-β-d-Galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose has been synthesised by reaction of benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-d-galactopyranosyl)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide in the presence of mercuric bromide, followed by hydrogenolysis. Benzylation of benzyl 3′,4′-O-isopropylidene-β-lactoside, via tributylstannylation, in the presence of tetrabutylammonium bromide or N-methylimidazole, gave benzyl 2,6-di-O-benzyl-4-O-(6-O-benzyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (6). α-Fucosylation of 6 in the presence of tetraethylammonium bromide provided either benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyransoyl)-β-d- galactopyranosyl]-β-d-glucopyranoside (13, 73%) or a mixture of 13 (42%) and benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4,-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d- galactopyranosyl-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (16, 34%). α-Fucosylation of 13 in the presence of mercuric bromide and 2,6-di-tert-butyl-4-methylpyridine gave 16 (73%). Hydrogenolysis and acid hydrolysis of 13 and 16 afforded O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-d-glucose and O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号